ﻻ يوجد ملخص باللغة العربية
This study examines the tail disconnection event on April 20, 2007 on comet 2P/Encke, caused by a coronal mass ejection (CME) at a heliocentric distance of 0.34 AU. During their interaction, both the CME and the comet are visible with high temporal and spatial resolution by the STEREO-A spacecraft. Previously, only current sheets or shocks have been accepted as possible reasons for comet tail disconnections, so it is puzzling that the CME caused this event. The MHD simulation presented in this work reproduces the interaction process and demonstrates how the CME triggered a tail disconnection in the April 20 event. It is found that the CME disturbs the comet with a combination of a $180^circ$ sudden rotation of the interplanetary magnetic field (IMF), followed by a $90^circ$ gradual rotation. Such an interpretation applies our understanding of solar wind-comet interactions to determine the textit{in situ} IMF orientation of the CME encountering Encke.
We study the interaction of two successive coronal mass ejections (CMEs) during the 2010 August 1 events using STEREO/SECCHI COR and HI data. We obtain the direction of motion for both CMEs by applying several independent reconstruction methods and f
The rotation of erupting filaments in the solar corona is addressed through a parametric simulation study of unstable, rotating flux ropes in bipolar force-free initial equilibrium. The Lorentz force due to the external shear field component and the
We perform four numerical magnetohydrodynamic simulations in 2.5 dimensions (2.5D) of fast Coronal Mass Ejections (CMEs) and their associated shock fronts between 10Rs and 300Rs. We investigate the relative change in the shock standoff distance, Sd,
We investigate the solar phenomena associated with the origin of the solar energetic particle (SEP) event observed on 2013 April 11 by a number of spacecraft distributed in the inner heliosphere over a broad range of heliolongitudes. We use Extreme U
We present a detailed study of the interaction process of two coronal mass ejections (CMEs) successively launched on 2011 February 14 (CME1) and 2011 February 15 (CME2). Reconstructing the 3D shape and evolution of the flux ropes we verify that the t