ﻻ يوجد ملخص باللغة العربية
We address the question whether one can identify instantons in direct numerical simulations of the stochastically driven Burgers equation. For this purpose, we first solve the instanton equations using the Chernykh-Stepanov method [Phys. Rev. E 64, 026306 (2001)]. These results are then compared to direct numerical simulations by introducing a filtering technique to extract prescribed rare events from massive data sets of realizations. Using this approach we can extract the entire time history of the instanton evolution which allows us to identify the different phases predicted by the direct method of Chernykh and Stepanov with remarkable agreement.
This work is devoted to the decay ofrandom solutions of the unforced Burgers equation in one dimension in the limit of vanishing viscosity. The initial velocity is homogeneous and Gaussian with a spectrum proportional to $k^n$ at small wavenumbers $k
A Freidlin-Wentzell type large deviation principle is established for stochastic partial differential equations with slow and fast time-scales, where the slow component is a one-dimensional stochastic Burgers equation with small noise and the fast co
In this review we discuss the weak KPZ universality conjecture for a class of 1-d systems whose dynamics conserves one or more quantities. As a prototype example for the former case, we will focus on weakly asymmetric simple exclusion processes, for
Since the famous work by Kolmogorov on incompressible turbulence, the structure-function theory has been a key foundation of modern turbulence study. Due to the simplicity of Burgers turbulence, structure functions are calculated to arbitrary orders,
This study uses a simplified detonation model to investigate the behaviour of detonations with galloping-like pulsations. The reactive Burgers equation is used for the hydrodynamic equation, coupled to a pulsed source whereby all the shocked reactant