ترغب بنشر مسار تعليمي؟ اضغط هنا

On the decay of Burgers turbulence

49   0   0.0 ( 0 )
 نشر من قبل Erik Aurell
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work is devoted to the decay ofrandom solutions of the unforced Burgers equation in one dimension in the limit of vanishing viscosity. The initial velocity is homogeneous and Gaussian with a spectrum proportional to $k^n$ at small wavenumbers $k$ and falling off quickly at large wavenumbers. In physical space, at sufficiently large distances, there is an ``outer region, where the velocity correlation function preserves exactly its initial form (a power law) when $n$ is not an even integer. When $1<n<2$ the spectrum, at long times, has three scaling regions : first, a $|k|^n$ region at very small $k$ms1 with a time-independent constant, stemming from this outer region, in which the initial conditions are essentially frozen; second, a $k^2$ region at intermediate wavenumbers, related to a self-similarly evolving ``inner region in physical space and, finally, the usual $k^{-2}$ region, associated to the shocks. The switching from the $|k|^n$ to the $k^2$ region occurs around a wave number $k_s(t) propto t^{-1/[2(2-n)]}$, while the switching from $k^2$ to $k^{-2}$ occurs around $k_L(t)propto t^{-1/2}$ (ignoring logarithmic corrections in both instances). The key element in the derivation of the results is an extension of the Kida (1979) log-corrected $1/t$ law for the energy decay when $n=2$ to the case of arbitrary integer or non-integer $n>1$. A systematic derivation is given in which both the leading term and estimates of higher order corrections can be obtained. High-resolution numerical simulations are presented which support our findings.



قيم البحث

اقرأ أيضاً

This work is devoted to the study of the decay of multiscale deterministic solutions of the unforced Burgers equation in the limit of vanishing viscosity. A deterministic model of turbulence-like evolution is considered. We con- struct the initial perturbation as a piecewise linear analog of the Weierstrass function. The wavenumbers of this function form a Weierstrass spectrum, which accumulates at the origin in geometric progression.Reverse sawtooth functions with negative initial slope are used in this series as basic functions, while their amplitudes are chosen by the condition that the distribution of energy over exponential intervals of wavenumbers is the same as for the continuous spectrum in Burgers turbulence. Combining these two ideas allows us to obtain an exact analytical solution for the velocity field. We also notice that such multiscale waves may be constructed for multidimensional Burgers equation. This solution has scaling exponent h=-(1+n)/2 and its evolution in time is self-similar with logarithmic periodicity and with the same average law L(t) as for Burgers turbulence. Shocklines form self-similar regular tree-like struc- tures. This model also describes important properties of the Burgers turbulence such as the self-preservation of the evolution of large scale structures in the presence of small scales perturbations.
In this paper we numerically investigate the influence of dissipation during particle collisions in an homogeneous turbulent velocity field by coupling a discrete element method to a Lattice-Boltzmann simulation with spectral forcing. We show that ev en at moderate particle volume fractions the influence of dissipative collisions is important. We also investigate the transition from a regime where the turbulent velocity field significantly influences the spatial distribution of particles to a regime where the distribution is mainly influenced by particle collisions.
The turbulence of superfluid helium is investigated numerically at finite temperature. Direct numerical simulations are performed with a truncated HVBK model, which combines the continuous description of the Hall-Vinen-Bekeravich-Khalatnikov equation s with the additional constraint that this continuous description cannot extend beyond a quantum length scale associated with the mean spacing between individual superfluid vortices. A good agreement is found with experimental measurements of the vortex density. Besides, by varying the turbulence intensity only, it is observed that the inter-vortex spacing varies with the Reynolds number as $Re^{-3/4}$, like the viscous length scale in classical turbulence. In the high temperature limit, Kolmogorovs inertial cascade is recovered, as expected from previous numerical and experimental studies. As the temperature decreases, the inertial cascade remains present at large scales while, at small scales, the system evolves towards a statistical equipartition of kinetic energy among spectral modes, with a characteristic $k^2$ velocity spectrum. The accumulation of superfluid excitations on a range of mesoscales enables the superfluid to keep dissipating kinetic energy through mutual friction with the residual normal fluid, although the later becomes rare at low temperature. It is found that most of the superfluid vorticity can concentrate on these mesoscales at low temperature, while it is concentrated in the inertial range at higher temperature. This observation should have consequences on the interpretation of decaying turbulence experiments, which are often based on vortex line density measurements.
The 4/5-law of turbulence, which characterizes the energy cascade from large to small-sized eddies at high Reynolds numbers in classical fluids, is verified experimentally in a superfluid 4He wind tunnel, operated down to 1.56 K and up to R_lambda ~ 1640. The result is corroborated by high-resolution simulations of Landau-Tiszas two-fluid model down to 1.15 K, corresponding to a residual normal fluid concentration below 3 % but with a lower Reynolds number of order R_lambda ~ 100. Although the Karman-Howarth equation (including a viscous term) is not valid emph{a priori} in a superfluid, it is found that it provides an empirical description of the deviation from the ideal 4/5-law at small scales and allows us to identify an effective viscosity for the superfluid, whose value matches the kinematic viscosity of the normal fluid regardless of its concentration.
61 - Jin-Han Xie 2021
Since the famous work by Kolmogorov on incompressible turbulence, the structure-function theory has been a key foundation of modern turbulence study. Due to the simplicity of Burgers turbulence, structure functions are calculated to arbitrary orders, which provides numerous implications for other compressible turbulent systems. We present the derivation of exact forcing-scale resolving expressions for high-order structure functions of the burgers turbulence. Compared with the previous theories where the structure functions are calculated in the inertial range based on the statistics of shocks, our expressions link high-order structure functions in different orders without extra information on the flow structure and are valid beyond the inertial range, therefore they are easily checked by numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا