ﻻ يوجد ملخص باللغة العربية
Pseudospin, an additional degree of freedom related to the honeycomb structure of graphene, is responsible of many of the outstanding electronic properties found in this material. This article provides a clear understanding of how such pseudospin impacts the quasiparticle interferences of monolayer (ML) and bilayer (BL) graphene measured by low temperature scanning tunneling microscopy and spectroscopy. We have used this technique to map, with very high energy and space resolution, the spatial modulations of the local density of states of ML and BL graphene epitaxialy grown on SiC(0001), in presence of native disorder. We perform a Fourier transform analysis of such modulations including wavevectors up to unit-vectors of the reciprocal lattice. Our data demonstrate that the quasiparticle interferences associated to some particular scattering processes are suppressed in ML graphene, but not in BL graphene. Most importantly, interferences with 2qF wavevector associated to intravalley backscattering are not measured in ML graphene, even on the images with highest resolution. In order to clarify the role of the pseudospin on the quasiparticle interferences, we use a simple model which nicely captures the main features observed on our data. The model unambiguously shows that graphenes pseudospin is responsible for such suppression of quasiparticle interferences features in ML graphene, in particular for those with 2qF wavevector. It also confirms scanning tunneling microscopy as a unique technique to probe the pseudospin in graphene samples in real space with nanometer precision. Finally, we show that such observations are robust with energy and obtain with great accuracy the dispersion of the pi-bands for both ML and BL graphene in the vicinity of the Fermi level, extracting their main tight binding parameters.
We present scanning tunneling microscopy (STM) images of single-layer graphene crystals examined under ultrahigh vacuum conditions. The samples, with lateral dimensions on the micron scale, were prepared on a silicon dioxide surface by direct exfolia
The conductance profiles of magnetic transition metal atoms, such as Fe, Co and Mn, deposited on surfaces and probed by a scanning tunneling microscope (STM), provide detailed information on the magnetic excitations of such nano-magnets. In general t
Tunneling magnetoresistance (TMR) in a vertical manganite junction was investigated by low-temperature scanning laser microscopy (LTSLM) allowing to determine the local relative magnetization M orientation of the two electrodes as a function of magni
We separate localization and interaction effects in epitaxial graphene devices grown on the C-face of a 4H-SiC substrate by analyzing the low temperature conductivities. Weak localization and antilocalization are extracted at low magnetic fields, aft
We show how the weak field magneto-conductance can be used as a tool to characterize epitaxial graphene samples grown from the C or the Si face of Silicon Carbide, with mobilities ranging from 120 to 12000 cm^2/(V.s). Depending on the growth conditio