ﻻ يوجد ملخص باللغة العربية
We have measured magnetoresistance of hexagonal lateral superlattices. We observe three types of oscillations engendered by periodic potential modulation having hexagonal-lattice symmetry: amplitude modulation of the Shubnikov-de Haas oscillations, commensurability oscillations, and the geometric resonances of open orbits generated by Bragg reflections. The latter two reveal the presence of two characteristic periodicities, sqrt{3} a / 2 and a / 2, inherent in a hexagonal lattice with the lattice constant a. The formation of the hexagonal-superlattice minibands manifested by the observation of open orbits marks the first step toward realizing massless Dirac fermions in semiconductor 2DEGs.
Hybrid lateral superlattices composed of a square array of antidots and a periodic one-dimensional magnetic modulation are prepared in $mathrm{Ga[Al]As}$ heterostructures. The two-dimensional electron gases exposed to these superlattices are characte
We report on transport properties of monolayer graphene with a laterally modulated potential profile, employing striped top gate electrodes with spacings of 100 nm to 200 nm. Tuning of top and back gate voltages gives rise to local charge carrier den
We have observed commensurability oscillations (CO) in the Hall resistance $R_{yx}$ of a unidirectional lateral superlattice (ULSL). The CO, having small amplitudes ($sim$ 1 $Omega$) and being superposed on a roughly three-orders of magnitude larger
We report on the observation of the magnetic quantum ratchet effect in graphene with a lateral dual-grating top gate (DGG) superlattice. We show that the THz ratchet current exhibits sign-alternating magneto-oscillations due to the Shubnikov-de Haas
In the present work we have investigated the transport properties in a number of Si/SiGe samples with square antidot lattices of different periods. In samples with lattice periods equal to 700 nm and 850 nm we have observed the conventional low-field