ﻻ يوجد ملخص باللغة العربية
We study terahertz transmission through nano-patterned vanadium dioxide thin film. It is found that the patterning allows the lowering of the apparent transition temperature. For the case of the smallest width nano antennas, the transition temperature is lower by as many as ten degrees relative to the bare film, so that the nano patterned hysteresis curves completely separate themselves from their bare film counterparts. This early transition comes from the one order of magnitude enhanced effective dielectric constants by nano antennas. This phenomenon opens up the possibility of transition temperature engineering.
Electrons in correlated insulators are prevented from conducting by Coulomb repulsion between them. When an insulator-to-metal transition is induced in a correlated insulator by doping or heating, the resulting conducting state can be radically diffe
Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previousl
Dynamically switchable half-/quarter-wave plates have recently been the focus in the terahertz regime. Conventional design philosophy leads to multilayer metamaterials or narrowband metasurfaces. Here we propose a novel design philosophy and a VO2-me
Detection of local strain at the nanometer scale with high sensitivity remains challenging. Here we report near-field infrared nano-imaging of local strains in bilayer graphene through probing strain-induced shifts of phonon frequency. As a non-polar
Spintronic terahertz (THz) emitter provides the advantages such as apparently broader spectrum, significantly lower cost, and more flexibility in compared with the commercial THz emitters, and thus attracts great interests recently. In past few years