ﻻ يوجد ملخص باللغة العربية
Spintronic terahertz (THz) emitter provides the advantages such as apparently broader spectrum, significantly lower cost, and more flexibility in compared with the commercial THz emitters, and thus attracts great interests recently. In past few years, efforts have been made in optimizing the material composition and structure geometry, and the conversion efficiency has been improved close to that of ZnTe crystal. One of the drawbacks of the current designs is the rather limited laser absorption - more than 50% energy is wasted and the conversion efficiency is thus limited. Here, we theoretically propose and experimentally demonstrate a novel device that fully utilizes the laser intensity and significantly improves the conversion efficiency. The device, which consists of a metal-dielectric photonic crystal structure, utilizes the interference between the multiple scattering waves to simultaneously suppress the reflection and transmission of the laser, and to reshape the laser field distributions. The experimentally detected laser absorption and THz generations show one-to-one correspondence with the theoretical calculations. We achieve the strongest THz pulse emission that presents a 1.7 times improvement compared to the currently designed spintronic emitter. This work opens a new pathway to improve the performance of spintronic THz emitter from the perspective of optics.
Electromagnetic field confinement is crucial for nanophotonic technologies, since it allows for enhancing light-matter interactions, thus enabling light manipulation in deep sub-wavelength scales. In the terahertz (THz) spectral range, radiation conf
We integrate about 100 single Cadmium Selenide semiconductor nanowires in self-standing Silicon Nitride photonic crystal cavities in a single processing run. Room temperature measurements reveal a single narrow emission linewidth, corresponding to a
Controlling the energy flow processes and the associated energy relaxation rates of a light emitter is of high fundamental interest, and has many applications in the fields of quantum optics, photovoltaics, photodetection, biosensing and light emissi
Terahertz electromagnetic radiation is extremely useful for numerous applications such as imaging and spectroscopy. Therefore, it is highly desirable to have an efficient table-top emitter covering the 1-to-30-THz window whilst being driven by a low-
Colloidal probe Atomic Force Microscopy (AFM) allows to explore sliding states of vanishing friction, i.e. superlubricity, in mesoscopic graphite contacts. In this respect, superlubricity is known to appear upon formation of a triboinduced transfer l