ﻻ يوجد ملخص باللغة العربية
We discuss the electronic structure, lattice dynamics and electron-phonon interaction of newly discovered superconductor LaO$_{0.5}$F$_{0.5}$BiS$_{2}$ using density functional based calculations. A strong Fermi surface nesting at $mathbf{k}$=($pi $,$pi $,0) suggests a proximity to charge density wave instability and leads to imaginary harmonic phonons at this $mathbf{k}$ point associated with in-plane displacements of S atoms. Total energy analysis resolves only a shallow double-well potential well preventing the appearance of static long-range order. Both harmonic and anharmonic contributions to electron-phonon coupling are evaluated and give a total coupling constant $lambda simeq 0.85$ prompting this material to be a conventional superconductor contrary to structurally similar FeAs materials.
We report density functional calculations of the electronic structure, Fermi surface, phonon spectrum and electron--phonon coupling for newly discovered superconductor LaO$_{0.5}$F$_{0.5}$BiSe$_{2}$. Significant similarity between LaO$_{0.5}$F$_{0.5}
NdO$_{0.5}$F$_{0.5}$BiS$_{2}$ is a new layered superconductor. We have studied the low-lying electronic structure of a single crystalline NdO$_{0.5}$F$_{0.5}$BiS$_{2}$ superconductor, whose superconducting transition temperature is 4.87K, with angle-
We present inelastic neutron scattering results of phonons in (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_x$Te powders, with $x=0$ and 0.3. The $x=0$ sample is a topological crystalline insulator, and the $x=0.3$ sample is a superconductor with a bulk supercon
We present the effect of yttrium substitution on superconductivity in the La$_{1-textit{x}}$Y$_{textit{x}}$O$_{0.5}$F$_{0.5}$BiS$_{2}$ system. Polycrystalline samples with nominal Y concentrations up to 40% were synthesized and characterized via elec
Superconductivity (SC) and charge-density wave (CDW) are two contrasting yet relevant collective electronic states which have received sustained interest for decades. Here we report that, in a layered europium bismuth sulfofluoride, EuBiS$_2$F, a CDW