ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic Structure of Single Crystalline NdO$_{0.5}$F$_{0.5}$BiS$_{2}$ Studied by Angle-resolved Photoemission Spectroscopy

162   0   0.0 ( 0 )
 نشر من قبل Zirong Ye
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NdO$_{0.5}$F$_{0.5}$BiS$_{2}$ is a new layered superconductor. We have studied the low-lying electronic structure of a single crystalline NdO$_{0.5}$F$_{0.5}$BiS$_{2}$ superconductor, whose superconducting transition temperature is 4.87K, with angle-resolved photoemission spectroscopy. The Fermi surface consists of two small electron pockets around the X point and shows little warping along the $k_z$ direction. Our results demonstrate the multi-band and two-dimensional nature of the electronic structure. The good agreement between the photoemission data and the band calculations gives the renormalization factor of 1, indicating the rather weak electron correlations in this material. Moreover, we found that the actual electron doping level and Fermi surface size are much smaller than what are expected from the nominal composition, which could be largely explained by the bismuth dificiency. The small Fermi pocket size and the weak electron correlations found here put strong constraints on theory, and suggest that the BiS$_2$-based superconductors could be conventional BCS superconductors mediated by the electron-phonon coupling.



قيم البحث

اقرأ أيضاً

We have investigated the electronic structure of BiS$_2$-based CeO$_{0.5}$F$_{0.5}$BiS$_2$ superconductor using polarization-dependent angle-resolved photoemission spectroscopy (ARPES), and succeeded in elucidating the orbital characters on the Fermi surfaces. In the rectangular Fermi pockets around X point, the straight portion parallel to the $k_y$ direction is dominated by Bi $6p_x$ character. The orbital polarization indicates the underlying quasi-one-dimensional electronic structure of the BiS$_2$ system. Moreover, distortions on tetragonally aligned Bi could give rise to the band Jahn-Teller effect.
137 - L. Jiao , Z. F. Weng , J. Z. Liu 2014
We measure the magnetic penetration depth $Deltalambda(T)$ for NdO$_{1-x}$F$_{x}$BiS$_{2}$ ($x$ = 0.3 and 0.5) using the tunnel diode oscillator technique. The $Deltalambda(T)$ shows an upturn in the low-temperature limit which is attributed to the p aramagnetism of Nd ions. After subtracting the paramagnetic contributions, the penetration depth $Deltalambda(T)$ follows exponential-type temperature dependence at $Tll T_c$. Both $Deltalambda(T)$ and the corresponding superfluid density $rho_s(T)$ can be described by the BCS model with an energy gap of $Delta(0)$ $approx$ 2.0 $k_BT_c$ for both $x$ = 0.3 and 0.5, suggesting strong-coupling BCS superconductivity in the presence of localized moments for NdO$_{1-x}$F$_{x}$BiS$_{2}$.
We report high resolution angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of BaFe$_2$As$_2$, which is one of the parent compounds of the Fe-pnictide superconductors. ARPES measurements have been performed at 20 K and 300 K, corresponding to the orthorhombic antiferromagnetic phase and the tetragonal paramagnetic phase, respectively. Photon energies between 30 and 175 eV and polarizations parallel and perpendicular to the scattering plane have been used. Measurements of the Fermi surface yield two hole pockets at the $Gamma$-point and an electron pocket at each of the X-points. The topology of the pockets has been concluded from the dispersion of the spectral weight as a function of binding energy. Changes in the spectral weight at the Fermi level upon variation of the polarization of the incident photons yield important information on the orbital character of the states near the Fermi level. No differences in the electronic structure between 20 and 300 K could be resolved. The results are compared with density functional theory band structure calculations for the tetragonal paramagnetic phase.
196 - L. X. Yang , B. P. Xie , Y. Zhang 2010
The electronic structure of LaOFeAs, a parent compound of iron-arsenic superconductors, is studied by angleresolved photoemission spectroscopy. By examining its dependence on photon energy, polarization, sodium dosing and the counting of Fermi surfac e volume, both the bulk and the surface contributions are identified. We find that a bulk band moves toward high binding energies below structural transition, and shifts smoothly across the spin density wave transition by about 25 meV. Our data suggest the band reconstruction may play a crucial role in the spin density wave transition, and the structural transition is driven by the short range magnetic order. For the surface states, both the LaO-terminated and FeAs-terminated components are revealed. Certain small band shifts are verified for the FeAs-terminated surface states in the spin density wave state, which is a reflection of the bulk electronic structure reconstruction. Moreover, sharp quasiparticle peaks quickly rise at low temperatures, indicating of drastic reduction of the scattering rate. A kink structure in one of the surface band is shown to be possibly related to the electron-phonon interactions.
129 - Fengfeng Zhu , W. X. Jiang , P. Li 2016
Electronic structure of single crystalline Ba(Zn$_{0.875}$Mn$_{0.125}$)$_{2}$As$_{2}$, parent compound of the recently founded high-temperature ferromagnetic semiconductor, was studied by high-resolution photoemission spectroscopy (ARPES). Through sy stematically photon energy and polarization dependent measurements, the energy bands along the out-of-plane and in-plane directions were experimentally determined. Except the localized states of Mn, the measured band dispersions agree very well with the first-principle calculations of undoped BaZn$_{2}$As$_{2}$. A new feature related to Mn 3d states was identified at the binding energies of about -1.6 eV besides the previously observed feature at about -3.3 eV. We suggest that the hybridization between Mn and As orbitals strongly enhanced the density of states around -1.6 eV. Although our resolution is much better compared with previous soft X-ray photoemission experiments, no clear hybridization gap between Mn 3d states and the valence bands proposed by previous model calculations was detected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا