ترغب بنشر مسار تعليمي؟ اضغط هنا

Velocity asymmetries in YSO jets: Intrinsic and extrinsic mechanisms

178   0   0.0 ( 0 )
 نشر من قبل Titos Matsakos Dr
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is a well established fact that some YSO jets (e.g. RW Aur) display different propagation speeds between their blue and red shifted parts, a feature possibly associated with the central engine or the environment in which the jet propagates. In order to understand the origin of asymmetric YSO jet velocities, we investigate the efficiency of two candidate mechanisms, one based on the intrinsic properties of the system and one based on the role of the external medium. In particular, a parallel or anti-parallel configuration between the protostellar magnetosphere and the disk magnetic field is considered and the resulting dynamics are examined both in an ideal and a resistive magneto-hydrodynamical (MHD) regime. Moreover, we explore the effects of a potential difference in the pressure of the environment, as a consequence of the non-uniform density distribution of molecular clouds. Ideal and resistive axisymmetric numerical simulations are carried out for a variety of models, all of which are based on a combination of two analytical solutions, a disk wind and a stellar outflow. We find that jet velocity asymmetries can indeed occur both when multipolar magnetic moments are present in the star-disk system as well as when non-uniform environments are considered. The latter case is an external mechanism that can easily explain the large time scale of the phenomenon, whereas the former one naturally relates it to the YSO intrinsic properties. [abridged]



قيم البحث

اقرأ أيضاً

Observations of several protostellar jets show systematic differences in radial velocity transverse to the jet propagation direction, which have been interpreted as evidence of rotation in the jets. In this paper we discuss the origin of these veloci ty shifts, and show that they could be originated by rotation in the flow, or by side to side asymmetries in the shock velocity, which could be due to asymmetries in the jet ejection velocity/density or in the ambient medium. For typical poloidal jet velocities (~ 100-200 km/s), an asymmetry >~ 10% can produce velocity shifts comparable to those observed. We also present three dimensional numerical simulations of rotating, precessing and asymmetric jets, and show that, even though for a given jet there is a clear degeneracy between these effects, a statistical analysis of jets with different inclination angles can help to distinguish between the alternative origins of transverse velocity shifts. Our analysis indicate that side to side velocities asymmetries could represent an important contribution to transverse velocity shifts, being the most important contributor for large jet inclination angles (with respect the the plane of the sky), and can not be neglected when interpreting the observations.
Identifying the intrinsic and extrinsic origins of magneto-transport in spin-orbit coupled systems has long been a central theme in condensed matter physics. However, it has been elusive owing to the lack of an appropriate experimental tool. In this work, using terahertz time-domain spectroscopy, we unambiguously disentangle the intrinsic and extrinsic contributions to the anisotropic magnetoresistance (AMR) of a permalloy film. We find that the scattering-independent intrinsic contribution to AMR is sizable and is as large as the scattering-dependent extrinsic contribution to AMR. Moreover, the portion of intrinsic contribution to total AMR increases with increasing temperature due to the reduction of extrinsic contribution. Further investigation reveals that the reduction of extrinsic contribution is caused by the phonon/magnon-induced negative AMR. Our result will stimulate further researches on other spin-orbit-interaction-induced phenomena for which identifying the intrinsic and extrinsic contributions is important.
We investigate the intrinsic and extrinsic curvatures of certain hypersurfaces in the thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner-Nordstr{o}m-(A)de Sitter black hole (P hantom), the extrinsic curvature of a constant $Q$ hypersurface has the same sign as the heat capacity around the phase transition points. For a Kerr-Newmann-AdS (KN-AdS) black hole, the extrinsic curvature of $Q to 0$ hypersurface (Kerr black hole) or $J to 0$ hypersurface (RN black black hole) has the same sign as the heat capacity around the phase transition points. The extrinsic curvature also diverges at the phase transition points. The intrinsic curvature of the hypersurfaces diverges at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN and Kerr ones cite{ref1}. This approach can be easily generalized to an arbitrary thermodynamic system.
114 - D. Froebrich , S.V. Makin 2016
We present the analysis of 35.5 square degrees of images in the 1-0S(1) line of H2 from the UK Widefield Infrared Survey for H2 (UWISH2) towards Cassiopeia and Auriga. We have identified 98 Molecular Hydrogen emission-line Objects (MHOs) driven by Yo ung Stellar Objects, 60% of which are bipolar outflows and all are new discoveries. We estimate that the UWISH2 extended emission object catalogue contains fewer than % false positives and is complete at the 95% level for jets and outflows brighter than the UWISH2 detection limit. We identified reliable driving source candidates for three quarters of the detected outflows, 40% of which are associated with groups and clusters of stars. The driving source candidates are 20% protostars, the remainder are CTTSs. We also identified 15 new star cluster candidates near MHOs in the survey area. We find that the typical outflow identified in the sample has the following characteristics: the position angles are randomly orientated; bipolar outflows are straight within a few degrees; the two lobes are slightly asymmetrical in length and brightness; the length and brightness of the lobes are not correlated; typical time gaps between major ejections of material are 1-3kyr, hence FU-Ori or EX-Ori eruptions are most likely not the cause of these, but we suggest MNors as a possible source. Furthermore, we find that outflow lobe length distributions are statistically different from the widely used total length distributions. There are a larger than expected number of bright outflows indicating that the flux distribution does not follow a power law.
The asymmetries observed in the line profiles of solar flares can provide important diagnostics of the properties and dynamics of the flaring atmosphere. In this paper the evolution of the Halpha and Ca II 8542 {AA} lines are studied using high spati al, temporal and spectral resolution ground-based observations of an M1.1 flare obtained with the Swedish 1-m Solar Telescope. The temporal evolution of the Halpha line profiles from the flare kernel shows excess emission in the red wing (red asymmetry) before flare maximum, and excess in the blue wing (blue asymmetry) after maximum. However, the Ca II 8542 {AA} line does not follow the same pattern, showing only a weak red asymmetry during the flare. RADYN simulations are used to synthesise spectral line profiles for the flaring atmosphere, and good agreement is found with the observations. We show that the red asymmetry observed in Halpha is not necessarily associated with plasma downflows, and the blue asymmetry may not be related to plasma upflows. Indeed, we conclude that the steep velocity gradients in the flaring chromosphere modifies the wavelength of the central reversal in the Halpha line profile. The shift in the wavelength of maximum opacity to shorter and longer wavelengths generates the red and blue asymmetries, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا