ﻻ يوجد ملخص باللغة العربية
We investigate the intrinsic and extrinsic curvatures of certain hypersurfaces in the thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner-Nordstr{o}m-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant $Q$ hypersurface has the same sign as the heat capacity around the phase transition points. For a Kerr-Newmann-AdS (KN-AdS) black hole, the extrinsic curvature of $Q to 0$ hypersurface (Kerr black hole) or $J to 0$ hypersurface (RN black black hole) has the same sign as the heat capacity around the phase transition points. The extrinsic curvature also diverges at the phase transition points. The intrinsic curvature of the hypersurfaces diverges at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN and Kerr ones cite{ref1}. This approach can be easily generalized to an arbitrary thermodynamic system.
In this paper, we analytically study the critical exponents and universal amplitudes of the thermodynamic curvatures such as the intrinsic and extrinsic curvature at the critical point of the small-large black hole phase transition for the charged Ad
As an extension to our earlier work cite{Mirza2}, we employ the Nambu brackets to prove that the divergences of heat capacities correspond to their counterparts in thermodynamic geometry. We also obtain a simple representation for the conformal trans
In this paper, the new formalism of thermodynamic geometry proposed in [1] is employed in investigating phase transition points and the critical behavior of a Gauss Bonnet-AdS black hole in four dimensional spacetime. In this regard, extrinsic and in
In this letter, we first redefine our formalism of the thermodynamic geometry introduced in [1,2] by changing coordinates of the thermodynamic space by means of Jacobian matrices. We then show that the geometrothermodynamics (GTD) is conformally rela
We propose a class of theories that can limit scalars constructed from the extrinsic curvature. Applied to cosmology, this framework allows us to control not only the Hubble parameter but also anisotropies without the problem of Ostrogradsky ghost, w