ﻻ يوجد ملخص باللغة العربية
Berry and Balazs showed that an initial Airy packet Ai(b x) under time evolution is nonspreading in free space and also in a homogeneous time-varying linear potential V(x,t)=-F(t) x. We find both results can be derived from the time evolution operator U(t). We show that U(t) can be decomposed into ordered product of operators and is essentially a shift operator in x; hence, Airy packets evolve without distortion. By writing the Hamiltonian H as H=H_b+H_i, where H_b is the Hamiltonian such that Ai(b x) is its eigenfunction. Then, H_i is shown to be as an interacting Hamiltonian that causes the Airy packet into an accelerated motion of which the acceleration a=(-H_i/( x))/m. Nonspreading Airy packet then acts as a classical particle of mass m, and the motion of it can be described classically by H_i.
We propose and experimentally demonstrate a method to prepare a nonspreading atomic wave packet. Our technique relies on a spatially modulated absorption constantly chiseling away from an initially broad de Broglie wave. The resulting contraction is
Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation-invariance. A lesser-explored strategy for achieving optical selfsimilar propagation exploits the modification of the spatio-temp
Time evolution of radial wave packets built from the eigenstates of Dirac equation for a hydrogenic systems is considered. Radial wave packets are constructed from the states of different $n$ quantum number and the same lowest angular momentum. In ge
Localization of relativistic particles have been of great research interests over many decades. We investigate the time evolution of the Gaussian wave packets governed by the one dimensional Dirac equation. For the free Dirac equation, we obtain the
In the present paper we show that the Temporal Wave Function approach of the decay process, which is a multicomponent version of the Time Operator approach leads to new, non-standard, predictions concerning the statistical properties of decay time di