ﻻ يوجد ملخص باللغة العربية
In the present paper we show that the Temporal Wave Function approach of the decay process, which is a multicomponent version of the Time Operator approach leads to new, non-standard, predictions concerning the statistical properties of decay time distributions of single kaons and entangled pairs of mesons. These results suggest crucial experimental tests for the existence of a Time Operator for the decay process to be realized in High Energy Physics or Quantum Optics.
The time operator for a quantum singular oscillator of the Calogero-Sutherland type is constructed in terms of the generators of the SU(1,1) group. In the space spanned by the eigenstates of the Hamiltonian, the time operator is not self-adjoint. We
We apply a distance-based Bell-test analysis method [E. Knill et al., Phys. Rev. A. 91, 032105 (2015)] to three experimental data sets where conventional analyses failed or required additional assumptions. The first is produced from a new classical s
Berry and Balazs showed that an initial Airy packet Ai(b x) under time evolution is nonspreading in free space and also in a homogeneous time-varying linear potential V(x,t)=-F(t) x. We find both results can be derived from the time evolution operato
Time operator is studied on the basis of field quantization, where the difficulty stemming from Paulis theorem is circumvented by borrowing ideas from the covariant quantization of the bosonic string, i.e., one can remove the negative energy states b
The founding fathers of the quantum theory already struggled with the different roles of space and time in quantum theory. Position is by default represented by an operator, whereas time is usually treated as a parameter. Time operator models exist,