ﻻ يوجد ملخص باللغة العربية
We report our multiwavelength study of the 2011 outburst evolution of the newly discovered black hole candidate X-ray binary Swift J1357.2-0933. We analysed the Swift X-ray telescope and Ultraviolet/Optical telescope (UVOT) data taken during the ~7 months duration of the outburst. It displayed a 2-10 keV X-ray peak luminosity of ~1E35(D/1.5 kpc)^2 erg s-1 which classifies the source as a very faint X-ray transient. We found that the X-ray spectrum at the peak was consistent with the source being in the hard state, but it softened with decreasing luminosity, a common behaviour of black holes at low luminosities or returning to quiescence from the hard state. The correlations between the simultaneous X-ray and ultraviolet/optical data suggest a system with a black hole accreting from a viscous disc that is not irradiated. The UVOT filters provide the opportunity to study these correlations up to ultraviolet wavelengths a regime so far unexplored. If the black hole nature is confirmed, Swift J1357.2-0933 would be one of the very few established black hole very-faint X-ray transients.
We report on the X-ray spectral (using XMM-Newton data) and timing behavior (using XMM-Newton and Rossi X-ray Timing Explorer [RXTE] data) of the very faint X-ray transient and black hole system Swift J1357.2-0933 during its 2011 outburst. The XMM-Ne
We present high time-resolution ULTRACAM optical and NOTCam infrared observations of the edge-on black hole X-ray transient Swift J1357.2-0933. Our data taken in 2012 and 2013 show the system to be at its pre-outburst magnitude and so the system is i
Swift J1357.2-0933 is the first confirmed very faint black hole X-ray transient and has a short estimated orbital period of 2.8 hr. We observed Swift J1357.2-0933 for ~50 ks with XMM-Newton in 2013 July during its quiescent state. The source is clear
We present coordinated multiwavelength observations of the high Galactic latitude (b=+50 deg) black hole X-ray binary (XRB) J1357.2-0933 in quiescence. Our broadband spectrum includes strictly simultaneous radio and X-ray observations, and near-infra
We characterized the broad-band X-ray spectra of Swift J1745-26 during the decay of the 2013 outburst using INTEGRAL ISGRI, JEM-X and Swift XRT. The X-ray evolution is compared to the evolution in optical and radio. We fit the X- ray spectra with phe