ترغب بنشر مسار تعليمي؟ اضغط هنا

Supersymmetry with a Sister Higgs

165   0   0.0 ( 0 )
 نشر من قبل Daniele Alves
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Within the context of supersymmetric theories, explaining a 125 GeV Higgs motivates a consideration of a broader range of models. We consider a simple addition to the MSSM of a Sister Higgs ($Sigma_d$), a Higgs field that participates in electroweak symmetry breaking but does not give any direct masses to Standard Model matter fields. While a relatively minor addition, the phenomenological implications can be important. Such a field can be naturally charged under an additional symmetry group $G_s$. If gauged, the Higgs mass is naturally much larger than in the MSSM through an NMSSM-type interaction, but with $Sigma_d$ playing the role of $H_d$. The addition of the sister Higgs allows new R-parity violating operators $Sigma_d H_d E$, which are less constrained than conventional leptonic R-parity violation. Considerations of unification motivates the presence of colored $G_s$-charged fields. Production of these G-quarks can lead to new b-rich final states and modifications to decays of gluinos, as well as new opportunities for R-parity violation. Unlike a conventional fourth generation, G-quarks dominantly decay into a light jet and a scalar (potentially the Higgs), which then generally decays to b-jets. The presence of additional sister charges allows the possibilities that lightest sister-charged particle (LSiP) could be stable. We consider the possibility of an LSiP dark matter candidate and find it is generally very constrained.



قيم البحث

اقرأ أيضاً

In models where an additional SU(2)-doublet that does not have couplings to fermions participates in electroweak symmetry breaking, the properties of the Higgs boson are changed. At tree level, in the neighborhood of the SM-like range of parameter sp ace, it is natural to have the coupling to vectors, cV, approximately constant, while the coupling to fermions, cf, is suppressed. This leads to enhanced VBF signals of gamma gamma while keeping other signals of Higgses approximately constant (such as WW* and ZZ*), and suppressing higgs to tau tau. Sizable tree-level effects are often accompanied by light charged Higgs states, which lead to important constraints from b to s gamma and top to b H+, but also often to similarly sizable contributions to the inclusive h to gamma gamma signal from radiative effects. In the simplest model, this is described by a Type I 2HDM, and in supersymmetry is naturally realized with sister Higgs fields. In such a scenario, additional light charged states can contribute further with fewer constraints from heavy flavor decays. With supersymmetry, Grand Unification motivates the inclusion of colored partner fields. These G-quarks may provide additional evidence for such a model.
Global frequentist fits to the CMSSM and NUHM1 using the MasterCode framework predicted m_h simeq 119 GeV in fits incorporating the g_mu-2 constraint and simeq 126 GeV without it. Recent results by ATLAS and CMS could be compatible with a Standard Model-like Higgs boson around m_h simeq 125 GeV. We use the previous MasterCode analysis to calculate the likelihood for a measurement of any nominal Higgs mass within the range of 115 to 130 GeV. Assuming a Higgs mass measurement at m_h simeq 125 GeV, we display updated global likelihood contours in the (m_0, m_{1/2}) and other parameter planes of the CMSSM and NUHM1, and present updated likelihood functions for m_gluino, m_squark, B to mu mu, and the spin-independent dark matter cross section sigma^si. The implications of dropping g_mu-2 from the fits are also discussed. We furthermore comment on a hypothetical measurement of m_h simeq 119 GeV.
Assuming that supersymmetry exists well above the weak scale, we derive the full one-loop matching conditions between the SM and the supersymmetric theory, allowing for the possibility of an intermediate Split-SUSY scale. We also compute two-loop QCD corrections to the matching condition of the Higgs quartic coupling. These results are used to improve the calculation of the Higgs mass in models with high-scale supersymmetry or split supersymmetry, reducing the theoretical uncertainty. We explore the phenomenology of a mini-split scenario with gaugino masses determined by anomaly mediation. Depending on the value of the higgsino mass, the theory predicts a variety of novel possibilities for the dark-matter particle.
We investigate the prospects for the discovery of a neutral Higgs boson produced with one bottom quark followed by Higgs decay into a pair of bottom quarks at the CERN Large Hadron Collider (LHC) and the Fermilab Tevatron Collider. We work within the framework of the minimal supersymmetric standard model. The dominant physics background is calculated with realistic acceptance cuts and efficiencies including the production of $bbbar{b}$, $bar{b}bbar{b}$, $jbbar{b}$ ($j = g, q, bar{q}$; $q = u, d, s, c$), $tbar{t} to bbar{b}jjell u$, and $tbar{t} to bbar{b}jjjj$. Promising results are found for the CP-odd pseudoscalar ($A^0$) and the heavier CP-even scalar ($H^0$) Higgs bosons with masses up to 800 GeV for the LHC with an integrated luminosity ($L$) of 30 fb$^{-1}$ and up to 1 TeV for $L =$ 300 fb$^{-1}$.
Possible realistic scenarios are investigated in the minimal supersymmetric standard model (MSSM) Higgs sector extended by dimension-six effective operators. The CP-odd Higgs boson with low mass around 30--90 GeV could be consistently introduced in t he regime of large threshold corrections to the effective MSSM two-doublet Higgs potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا