ﻻ يوجد ملخص باللغة العربية
We investigate the prospects for the discovery of a neutral Higgs boson produced with one bottom quark followed by Higgs decay into a pair of bottom quarks at the CERN Large Hadron Collider (LHC) and the Fermilab Tevatron Collider. We work within the framework of the minimal supersymmetric standard model. The dominant physics background is calculated with realistic acceptance cuts and efficiencies including the production of $bbbar{b}$, $bar{b}bbar{b}$, $jbbar{b}$ ($j = g, q, bar{q}$; $q = u, d, s, c$), $tbar{t} to bbar{b}jjell u$, and $tbar{t} to bbar{b}jjjj$. Promising results are found for the CP-odd pseudoscalar ($A^0$) and the heavier CP-even scalar ($H^0$) Higgs bosons with masses up to 800 GeV for the LHC with an integrated luminosity ($L$) of 30 fb$^{-1}$ and up to 1 TeV for $L =$ 300 fb$^{-1}$.
We investigate the prospects for the discovery at the CERN Large Hadron Collider or at the Fermilab Tevatron of neutral Higgs bosons through the channel where the Higgs are produced together with a single bottom quark and the Higgs decays into a pair
We study the production of a Higgs boson in association with bottom quarks in hadronic collisions, and present phenomenological predictions relevant to the 13 TeV LHC. Our results are accurate to the next-to-leading order in QCD, and matched to parto
A common lore has arisen that beyond the Standard Model (BSM) particles, which can be searched for at current and proposed experiments, should have flavorless or mostly third-generation interactions with Standard Model quarks. This theoretical bias s
Possible realistic scenarios are investigated in the minimal supersymmetric standard model (MSSM) Higgs sector extended by dimension-six effective operators. The CP-odd Higgs boson with low mass around 30--90 GeV could be consistently introduced in t
We review the present status of the QCD corrected cross sections and kinematic distributions for the production of a Higgs boson in association with bottom quarks at the Fermilab Tevatron and CERN Large Hadron Collider. Results are presented for the