ﻻ يوجد ملخص باللغة العربية
In this article we study the top of the spectrum of the normalized Laplace operator on infinite graphs. We introduce the dual Cheeger constant and show that it controls the top of the spectrum from above and below in a similar way as the Cheeger constant controls the bottom of the spectrum. Moreover, we show that the dual Cheeger constant at infinity can be used to characterize that the essential spectrum of the normalized Laplace operator shrinks to one point.
In this paper, we study eigenvalues and eigenfunctions of $p$-Laplacians with Dirichlet boundary condition on graphs. We characterize the first eigenfunction (and the maximum eigenfunction for a bipartite graph) via the sign condition. By the uniquen
Given a graph with a designated set of boundary vertices, we define a new notion of a Neumann Laplace operator on a graph using a reflection principle. We show that the first eigenvalue of this Neumann graph Laplacian satisfies a Cheeger inequality.
We investigate self-adjoint extensions of the minimal Kirchhoff Laplacian on an infinite metric graph. More specifically, the main focus is on the relationship between graph ends and the space of self-adjoint extensions of the corresponding minimal K
Unfortunately the proof of the main result of [1], Theorem 1, has a flaw. Namely, Lemma 13 used in the proof of Proposition 11 is correct only under an additional assumption that the operator $A$ is normal (adjoint for the one-sided shift operator in
We investigate the bottom of the spectra of infinite quantum graphs, i.e., Laplace operators on metric graphs having infinitely many edges and vertices. We introduce a new definition of the isoperimetric constant for quantum graphs and then prove the