ترغب بنشر مسار تعليمي؟ اضغط هنا

Weyl fluid dark matter model tested on the galactic scale by weak gravitational lensing

179   0   0.0 ( 0 )
 نشر من قبل Ki Cheong Wong
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The higher dimensional Weyl curvature induces on the brane a new source of gravity. This Weyl fluid of geometrical origin (reducing in the spherically symmetric, static configuration to a dark radiation and dark pressure) modifies space-time geometry around galaxies and has been shown to explain the flatness of galactic rotation curves. Independent observations for discerning between the Weyl fluid and other dark matter models are necessary. Gravitational lensing could provide such a test. Therefore we study null geodesics and weak gravitational lensing in the dark radiation dominated region of galaxies in a class of spherically symmetric brane-world metrics. We find that the lensing profile in the brane-world scenario is distinguishable from dark matter lensing, despite both the brane-world scenario and dark matter models fitting the rotation curve data. In particular, in the asymptotic regions light deflection is 18% enhanced as compared to dark matter halo predictions. For a linear equation of state of the Weyl fluid we further find a critical radius, below which brane-world effects reduce, while above it they amplify light deflection. This is in contrast to any dark matter model, the addition of which always increases the deflection angle.



قيم البحث

اقرأ أيضاً

In this work the space-time geometry of the halo region in spiral galaxies is obtained considering the observed flat galactic rotation curve feature, invoking the Tully-Fisher relation and assuming the presence of cold dark matter in the galaxy. The gravitational lensing analysis is performed treating the so obtained space-time as a gravitational lens. It is found that the aforementioned space-time as the gravitational lens can consistently explain the galaxy-galaxy weak gravitational lensing observations and the lensing observations of the well-known Abell 370 galaxy cluster.
92 - Hideki Asada 2017
This paper reviews a phenomenological approach to the gravitational lensing by exotic objects such as the Ellis wormhole lens, where exotic lens objects may follow a non-standard form of the equation of state or may obey a modified gravity theory. A gravitational lens model is proposed in the inverse powers of the distance, such that the Schwarzschild lens and exotic lenses can be described in a unified manner as a one parameter family. As observational implications, the magnification, shear, photo-centroid motion and time delay in this lens model are discussed.
The gravitational lensing effects in the weak gravitational field by exotic lenses have been investigated intensively to find nonluminous exotic objects. Gravitational lensing based on 1/r^n fall-off metric, as a one-parameter model that can treat by hand both the Schwarzschild lens (n=1) and the Ellis wormhole (n=2) in the weak field, has been recently studied. Only for n=1 case, however, it has been explicitly shown that effects of relativistic lens images by the strong field on the light curve can be neglected. We discuss whether relativistic images by the strong field can be neglected for n>1 in the Tangherlini spacetime which is one of the simplest models for our purpose. We calculate the divergent part of the deflection angle for arbitrary n and the regular part for n=1, 2 and 4 in the strong field limit, the deflection angle for arbitrary n under the weak gravitational approximation. We also compare the radius of the Einstein ring with the radii of the relativistic Einstein rings for arbitrary n. We conclude that the images in the strong gravitational field have little effect on the total light curve and that the time-symmetric demagnification parts in the light curve will appear even after taking account of the images in the strong gravitational field for n>1.
181 - Seyen Kouwn , Phillial Oh 2012
We propose a dark energy model with a logarithmic cosmological fluid which can result in a very small current value of the dark energy density and avoid the coincidence problem without much fine-tuning. We construct a couple of dynamical models that could realize this dark energy at very low energy in terms of four scalar fields quintessence and discuss the current acceleration of the Universe. Numerical values can be made to be consistent with the accelerating Universe with adjustment of the two parameters of the theory. The potential can be given only in terms of the scale factor, but the explicit form at very low energy can be obtained in terms of the scalar field to yield of the form V(phi)=exp(-2phi)(frac{4 A}{3}phi+B). Some discussions and the physical implications of this approach are given.
The recent observation of the the gravitational wave event GW170817 and of its electromagnetic counterpart GRB170817A, from a binary neutron star merger, has established that the speed of gravitational waves deviates from the speed of light by less t han one part in $10^{15}$. As a consequence, many extensions of General Relativity are inevitably ruled out. Among these we find the most relevant sectors of Horndeski gravity. In its original formulation, mimetic gravity is able to mimic cosmological dark matter, has tensorial perturbations that travel exactly at the speed of light but has vanishing scalar perturbations and this fact persists if we combine mimetic with Horndeski gravity. In this work, we show that implementing the mimetic gravity action with higher-order terms that break the Horndeski structure yields a cosmological model that satisfies the constraint on the speed of gravitational waves and mimics both dark energy and dark matter with a non-vanishing speed of sound. In this way, we are able to reproduce the $Lambda$CDM cosmological model without introducing particle cold dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا