ﻻ يوجد ملخص باللغة العربية
We construct the exact position representation of a deformed quantum mechanics which exhibits an intrinsic maximum momentum and use it to study problems such as a particle in a box and scattering from a step potential, among others. In particular, we show that unlike usual quantum mechanics, the present deformed case delays the formation of bound states in a finite potential well. In the process we also highlight some limitations and pit-falls of low-momentum or perturbative treatments and thus resolve two puzzles occurring in the literature.
We examine a deformed quantum mechanics in which the commutator between coordinates and momenta is a function of momenta. The Jacobi identity constraint on a two-parameter class of such modified commutation relations (MCRs) shows that they encode an
An approach to study a generalization of the classical-quantum transition for general systems is proposed. In order to develop the idea, a deformation of the ladder operators algebra is proposed that contains a realization of the quantum group $SU(2)
Using phase-equivalent supersymmetric partner potentials, a general result from the inverse problem in quantum scattering theory is illustrated, i.e., that bound-state properties cannot be extracted from the phase shifts of a single partial wave, as
We study the effectiveness of the numerical bootstrap techniques recently developed in arXiv:2004.10212 for quantum mechanical systems. We find that for a double well potential the bootstrap method correctly captures non-perturbative aspects. Using t
We provide a systematic study on the possibility of supersymmetry (SUSY) for one dimensional quantum mechanical systems consisting of a pair of lines $R$ or intervals [-l, l] each having a point singularity. We consider the most general singularities