ﻻ يوجد ملخص باللغة العربية
We study the formation of photospheric emission lines in O stars and show that the rectangular profiles, sometimes double peaked, that are observed for some stars are a direct consequence of rotation, and it is unnecessary to invoke an enhanced density structure in the equatorial regions. Emission lines, such as N IV 4058 and the N III 4634-4640-4642 multiplet, exhibit non-standard limb darkening laws. The lines can be in absorption for rays striking the center of the star and in emission for rays near the limb. Weak features in the flux spectrum do not necessarily indicate an intrinsically weak feature -- instead the feature can be weak because of cancellation between absorption in core rays and emission from rays near the limb. Rotation also modifies line profiles of wind diagnostics such as He II 4686 and Halpha and should not be neglected when inferring the actual stratification, level and nature of wind structures.
The method of gyrochronology relates the age of its star to its rotation period. However, recent evidence of deviations from gyrochronology relations was reported in the literature. Here, we study the influence of tidal interaction between a star and
Supermassive stars born from pristine gas in atomically-cooled haloes are thought to be the progenitors of supermassive black holes at high redshifts. However, the way they accrete their mass is still an unsolved problem. In particular, for accretion
The magnetic activity of planet-hosting stars is an important factor to estimate the atmospheric stability of close-in exoplanets and the age of their host stars. It has long been speculated that close-in exoplanets can influence the stellar activity
By quantitatively fitting simple emission line profile models that include both atomic opacity and porosity to the Chandra X-ray spectrum of $zeta$ Pup, we are able to explore the trade-offs between reduced mass-loss rates and wind porosity. We find
Observations of Sun-like stars over the last half-century have improved our understanding of how magnetic dynamos, like that responsible for the 11-year solar cycle, change with rotation, mass and age. Here we show for the first time how metallicity