ترغب بنشر مسار تعليمي؟ اضغط هنا

The influence of metallicity on stellar differential rotation and magnetic activity

94   0   0.0 ( 0 )
 نشر من قبل Christoffer Karoff
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of Sun-like stars over the last half-century have improved our understanding of how magnetic dynamos, like that responsible for the 11-year solar cycle, change with rotation, mass and age. Here we show for the first time how metallicity can affect a stellar dynamo. Using the most complete set of observations of a stellar cycle ever obtained for a Sun-like star, we show how the solar analog HD 173701 exhibits solar-like differential rotation and a 7.4-year activity cycle. While the duration of the cycle is comparable to that generated by the solar dynamo, the amplitude of the brightness variability is substantially stronger. The only significant difference between HD 173701 and the Sun is its metallicity, which is twice the solar value. Therefore, this provides a unique opportunity to study the effect of the higher metallicity on the dynamo acting in this star and to obtain a comprehensive understanding of the physical mechanisms responsible for the observed photometric variability. The observations can be explained by the higher metallicity of the star, which is predicted to foster a deeper outer convection zone and a higher facular contrast, resulting in stronger variability.



قيم البحث

اقرأ أيضاً

265 - A. Frasca 2011
We present a spectroscopic/photometric analysis of the rapid rotator KIC8429280, discovered by ourselves as a very young star and observed by the Kepler mission. We use spectroscopic/photometric ground-based data to derive stellar parameters, and we adopt a spectral subtraction technique to highlight the chromospheric emission in the cores of Halpha, CaII H&K and IRT lines. We fit a robust spot model to the high-precision Kepler photometry spanning 138 days. Model selection and parameter estimation is performed in a Bayesian manner using a Markov chain Monte Carlo method. We find that KIC8429280 is a cool (K2V) star with an age of ~50 Myr, based on its Li content, that has passed its T Tau phase and is spinning up approaching the ZAMS. Its high level of chromospheric activity is indicated by the radiative losses in CaII H&K and IRT, Halpha, and Hbeta lines. Furthermore, its Balmer decrement and the flux ratio of CaII IRT lines imply that these lines are mainly formed in optically-thick sources analogue to solar plages. The analysis of the Kepler data uncovers evidence of at least 7 enduring spots. Since the stars inclination is rather high, ~70{deg}, the assignment of the spots to the northern/southern hemisphere is not unambiguous. We find at least 3 solutions with nearly the same level of residuals. The distribution of the active regions is such that the spots are located around 3 latitude belts, i.e. the equator and +-(50{deg}-60{deg}), with the high-latitude spots rotating slower than the low-latitude ones. The equator-to-pole differential rotation ~0.27 rad/d is at variance with some recent mean-field models of differential rotation in rapidly rotating MS stars, which predict a much smaller latitudinal shear. Our results are consistent with the scenario of a higher differential rotation, which changes along the magnetic cycle.
HD 179949 is an F8V star, orbited by a giant planet at ~8 R* every 3.092514 days. The system was reported to undergo episodes of stellar activity enhancement modulated by the orbital period, interpreted as caused by Star-Planet Interactions (SPIs). O ne possible cause of SPIs is the large-scale magnetic field of the host star in which the close-in giant planet orbits. In this paper we present spectropolarimetric observations of HD 179949 during two observing campaigns (2009 September and 2007 June). We detect a weak large-scale magnetic field of a few Gauss at the surface of the star. The field configuration is mainly poloidal at both observing epochs. The star is found to rotate differentially, with a surface rotation shear of dOmega=0.216pm0.061 rad/d, corresponding to equatorial and polar rotation periods of 7.62pm0.07 and 10.3pm0.8 d respectively. The coronal field estimated by extrapolating the surface maps resembles a dipole tilted at ~70 degrees. We also find that the chromospheric activity of HD 179949 is mainly modulated by the rotation of the star, with two clear maxima per rotation period as expected from a highly tilted magnetosphere. In September 2009, we find that the activity of HD 179949 shows hints of low amplitude fluctuations with a period close to the beat period of the system.
We present a detailed study of the two Sun-like stars KIC 7985370 and KIC 7765135, aimed at determining their activity level, spot distribution, and differential rotation. Both stars were discovered by us to be young stars and were observed by the NA SA Kepler mission. The stellar parameters (vsini, spectral type, Teff, log g, and [Fe/H]) were derived from optical spectroscopy which allowed us also to study the chromospheric activity from the emission in the core of Halpha and CaII IRT lines. The high-precision Kepler photometric data spanning over 229 days were then fitted with a robust spot model. Model selection and parameter estimation are performed in a Bayesian manner, using a Markov chain Monte Carlo method. Both stars came out to be Sun-like with an age of about 100-200 Myr, based on their lithium content and kinematics. Their youth is confirmed by the high level of chromospheric activity, comparable to that displayed by the early G-type stars in the Pleiades cluster. The flux ratio of the CaII-IRT lines suggests that the cores of these lines are mainly formed in optically-thick regions analogous to solar plages. The model of the light curves requires at least seven enduring spots for KIC 7985370 and nine spots for KIC 7765135 for a satisfactory fit. The assumption of longevity of the star spots, whose area is allowed to evolve in time, is at the heart of our approach. We found, for both stars, a rather high value of the equator-to-pole differential rotation (dOmega~0.18 rad/day) which is in contrast with the predictions of some mean-field models of differential rotation for fast-rotating stars. Our results are instead in agreement with previous works on solar-type stars and with other models which predict a higher latitudinal shear, increasing with equatorial angular velocity.
137 - K. Poppenhaeger , S.J. Wolk 2014
The magnetic activity of planet-hosting stars is an important factor to estimate the atmospheric stability of close-in exoplanets and the age of their host stars. It has long been speculated that close-in exoplanets can influence the stellar activity level. However, testing for tidal or magnetic interaction effects in samples of planet-hosting stars is difficult because stellar activity hinders exoplanet detection, so that stellar samples with detected exoplanets show a bias towards low activity for small exoplanets. We aim to test if exoplanets in close orbits influence the stellar rotation and magnetic activity of their host stars, and have developed a novel approach to test for such systematic activity enhancements. We use wide (several 100 AU) binary systems in which one of the stellar components is known to have an exoplanet, while the second stellar component does not have a detected planet and therefore acts as a negative control. We use the stellar coronal X-ray emission as an observational proxy for magnetic activity, and analyze observations performed with Chandra and XMM-Newton. We find that in two systems for which strong tidal interaction can be expected the planet-hosting primary displays a much higher magnetic activity level than the planet-free secondary. In three systems for which weaker tidal interaction can be expected the activity levels of both stellar components are in agreement. Our observations indicate that the presence of Hot Jupiters may inhibit the spin-down of host stars with thick outer convective layers. Possible causes for such an effect include a transfer of angular momentum from the planetary orbit to the stellar rotation through tidal interaction, or differences during the early evolution of the system, where the host star may decouple from the protoplanetary disk early due to a gap opened by the forming Hot Jupiter.
171 - P. J. Kapyla 2014
(abridged) Context: Solar-like differential rotation is characterized by a rapidly rotating equator and slower poles. However, theoretical models and numerical simulations can result in a slower equator and faster poles when the rotation is slow. Aim s: We study the critical rotational influence under which differential rotation flips from solar-like (fast equator, slow poles) to an anti-solar one (slow equator, fast poles). We estimate the non-diffusive ($Lambda$ effect) and diffusive (turbulent viscosity) contributions to the Reynolds stress. Methods: We present the results of three-dimensional numerical simulations of mildly turbulent convection in spherical wedge geometry. Here we apply a fully compressible setup which would suffer from a prohibitive time step constraint if the real solar luminosity was used. We regulate the convective velocities by varying the amount of heat transported by thermal conduction, turbulent diffusion, and resolved convection. Results: Increasing the efficiency of resolved convection leads to a reduction of the rotational influence on the flow and a sharp transition from solar-like to anti-solar differential rotation for Coriolis numbers around 1.3. We confirm the recent finding of a large-scale flow bistability: contrasted with running the models from an initial condition with unprescribed differential rotation, the initialization of the model with certain kind of rotation profile sustains the solution over a wider parameter range. Conclusions: Our results may have implications for real stars that start their lives as rapid rotators implying solar-like rotation in the early main-sequence evolution. As they slow down, they might be able to retain solar-like rotation for lower Coriolis numbers before switching to anti-solar rotation. This could partially explain the puzzling findings of anti-solar rotation profiles for models in the solar parameter regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا