ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization of light scattered by large aggregates

114   0   0.0 ( 0 )
 نشر من قبل Ludmilla Kolokolova
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Study of cosmic dust and planetary aerosols indicate that some of them contain a large number of aggregates of the size that significantly exceeds the wavelengths of the visible light. In some cases such large aggregates may dominate in formation of the light scattering characteristics of the dust. In this paper we present the results of computer modelling of light scattering by aggregates that contain more than 1000 monomers of submicron size and study how their light scattering characteristics, specifically polarization, change with phase angle and wavelength. Such a modeling became possible due to development of a new version of MSTM (Multi Sphere T-Matrix) code for parallel computing. The results of the modeling are applied to the results of comet polarimetric observations to check if large aggregates dominate in formation of light scattering by comet dust. We compare aggregates of different structure and porosity. We show that large aggregates of more than 98% porosity (e.g. ballistic cluster-cluster aggregates) have angular dependence of polarization almost identical to the Rayleigh one. Large compact aggregates (less than 80% porosity) demonstrate the curves typical for solid particles. This rules out too porous and too compact aggregates as typical comet dust particles. We show that large aggregates not only can explain phase angle dependence of comet polarization in the near infrared but also may be responsible for the wavelength dependence of polarization, which can be related to their porosity.



قيم البحث

اقرأ أيضاً

231 - William B. Sparks 2009
The identification of a universal biosignature that could be sensed remotely is critical to the prospects for success in the search for life elsewhere in the universe. A candidate universal biosignature is homochirality, which is likely to be a gener ic property of all biochemical life. Due to the optical activity of chiral molecules, it has been hypothesized that this unique characteristic may provide a suitable remote sensing probe using circular polarization spectroscopy. Here, we report the detection of circular polarization in light scattered by photosynthetic microbes. We show that the circular polarization appears to arise from circular dichroism of the strong electronic transitions of photosynthetic absorption bands. We conclude that circular polarization spectroscopy could provide a powerful remote sensing technique for generic life searches.
274 - T. Stolker , C. Dominik , M. Min 2016
High-contrast scattered light observations have revealed the surface morphology of several dozens of protoplanetary disks at optical and near-infrared wavelengths. Inclined disks offer the opportunity to measure part of the phase function of the dust grains that reside in the disk surface which is essential for our understanding of protoplanetary dust properties and the early stages of planet formation. We aim to construct a method which takes into account how the flaring shape of the scattering surface of an (optically thick) protoplanetary disk projects onto the image plane of the observer. This allows us to map physical quantities (scattering radius and scattering angle) onto scattered light images and retrieve stellar irradiation corrected (r^2-scaled) images and dust phase functions. We apply the method on archival polarized intensity images of the protoplanetary disk around HD 100546 that were obtained with VLT/SPHERE in R-band and VLT/NACO in H- and Ks-band. The brightest side of the r^2-scaled R-band polarized intensity image of HD 100546 changes from the far to the near side of the disk when a flaring instead of a geometrically flat disk surface is used for the r^2-scaling. The decrease in polarized surface brightness in the scattering angle range of ~40-70 deg is likely a result of the dust phase function and degree of polarization which peak in different scattering angle regimes. The derived phase functions show part of a forward scattering peak which indicates that large, aggregate dust grains dominate the scattering opacity in the disk surface. Projection effects of a protoplanetary disk surface need to be taken into account to correctly interpret scattered light images. Applying the correct scaling for the correction of stellar irradiation is crucial for the interpretation of the images and the derivation of the dust properties in the disk surface layer.
Three-dimensional hydrodynamic numerical simulations have demonstrated that the structure of a protoplanetary disc may be strongly affected by a planet orbiting in a plane that is misaligned to the disc. When the planet is able to open a gap, the dis c is separated into an inner, precessing disc and an outer disc with a warp. In this work, we compute infrared scattered light images to investigate the observational consequences of such an arrangement. We find that an inner disc misaligned by a less than a degree to the outer disc is indeed able to cast a shadow at larger radii. In our simulations a planet of around 6 Jupiter masses inclined by around 2 degrees is enough to warp the disc and cast a shadow with a depth of more than 10% of the average flux at that radius. We also demonstrate that warp in the outer disc can cause a variation in the azimuthal brightness profile at large radii. Importantly, this latter effect is a function of the distance from the star and is most prominent in the outer disc. We apply our model to the TW Hya system, where a misaligned, precessing inner disc has been invoked to explain an recently observed shadow in the outer disc. Consideration of the observational constraints suggest that an inner disc precessing due to a misaligned planet is an unlikely explanation for the features found in TW Hya.
Direct imaging surveys have found that long-period super-Jupiters are rare. By contrast, recent modeling of the widespread gaps in protoplanetary disks revealed by ALMA suggests an abundant population of smaller Neptune to Jupiter-mass planets at lar ge separations. The thermal emission from such lower-mass planets is negligible at optical and near-infrared wavelengths, leaving only their weak signals in reflected light. Planets do not scatter enough light at these large orbital distances, but there is a natural way to enhance their reflecting area. Each of the four giant planets in our solar system hosts swarms of dozens of irregular satellites, gravitationally captured planetesimals that fill their host planets spheres of gravitational influence. What we see of them today are the leftovers of an intense collisional evolution. At early times, they would have generated bright circumplanetary debris disks. We investigate the properties and detectability of such irregular satellite disks (ISDs) following models for their collisional evolution from Kennedy and Wyatt 2011. We find that ISD brightnesses peak in the $10-100$ AU range probed by ALMA, and can render planets detectable over a wide range of parameters with upcoming high-contrast instrumentation. We argue that future instruments with wide fields of view could simultaneously characterize the atmospheres of known close-in planets, and reveal the population of long-period $sim$ Neptune-Jupiter mass exoplanets inaccessible to other detection methods. This provides a complementary and compelling science case that would elucidate the early lives of planetary systems.
Debris disks or belts are important signposts for the presence of colliding planetesimals and, therefore, for ongoing planet formation and evolution processes in young planetary systems. Imaging of debris material at small separations from the star i s very challenging but provides valuable insights into the spatial distribution of so-called hot dust produced by solid bodies located in or near the habitable zone. We report the first detection of scattered light from the hot dust around the nearby (d = 28.33 pc) A star HD 172555. We want to constrain the geometric structure of the detected debris disk using polarimetric differential Imaging (PDI) with a spatial resolution of 25 mas and an inner working angle of about 0.1$$. We measured the polarized light of HD 172555, with SPHERE-ZIMPOL, in the very broad band (VBB; $lambda=735$ nm) filter for the projected separations between 0.08$$ (2.3 au) and 0.77$$ (22 au). We constrained the disk parameters by fitting models for scattering of an optically thin dust disk taking the limited spatial resolution and coronagraphic attenuation of our data into account. The geometric structure of the disk in polarized light shows roughly the same orientation and outer extent as obtained from thermal emission at 18 $mu$m. Our image indicates the presence of a strongly inclined ($isim 103.5^circ$), roughly axisymmetric dust belt with an outer radius in the range between 0.3$$ (8.5 au) and 0.4$$ (11.3 au). We derive a lower limit for the polarized flux contrast ratio for the disk of $(F_{rm pol})_{rm disk}/F_{rm ast}> (6.2 pm 0.6)cdot 10^{-5}$ in the VBB filter. This ratio is small, only 9 %, when compared to the fractional infrared flux excess ($approx 7.2cdot 10^{-4}$). The model simulations show that more polarized light could be produced by the dust located inside 2 au, which cannot be detected with the instrument configuration used.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا