ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of circular polarization in light scattered from photosynthetic microbes

231   0   0.0 ( 0 )
 نشر من قبل Sharon Toolan
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف William B. Sparks




اسأل ChatGPT حول البحث

The identification of a universal biosignature that could be sensed remotely is critical to the prospects for success in the search for life elsewhere in the universe. A candidate universal biosignature is homochirality, which is likely to be a generic property of all biochemical life. Due to the optical activity of chiral molecules, it has been hypothesized that this unique characteristic may provide a suitable remote sensing probe using circular polarization spectroscopy. Here, we report the detection of circular polarization in light scattered by photosynthetic microbes. We show that the circular polarization appears to arise from circular dichroism of the strong electronic transitions of photosynthetic absorption bands. We conclude that circular polarization spectroscopy could provide a powerful remote sensing technique for generic life searches.



قيم البحث

اقرأ أيضاً

Study of cosmic dust and planetary aerosols indicate that some of them contain a large number of aggregates of the size that significantly exceeds the wavelengths of the visible light. In some cases such large aggregates may dominate in formation of the light scattering characteristics of the dust. In this paper we present the results of computer modelling of light scattering by aggregates that contain more than 1000 monomers of submicron size and study how their light scattering characteristics, specifically polarization, change with phase angle and wavelength. Such a modeling became possible due to development of a new version of MSTM (Multi Sphere T-Matrix) code for parallel computing. The results of the modeling are applied to the results of comet polarimetric observations to check if large aggregates dominate in formation of light scattering by comet dust. We compare aggregates of different structure and porosity. We show that large aggregates of more than 98% porosity (e.g. ballistic cluster-cluster aggregates) have angular dependence of polarization almost identical to the Rayleigh one. Large compact aggregates (less than 80% porosity) demonstrate the curves typical for solid particles. This rules out too porous and too compact aggregates as typical comet dust particles. We show that large aggregates not only can explain phase angle dependence of comet polarization in the near infrared but also may be responsible for the wavelength dependence of polarization, which can be related to their porosity.
274 - T. Stolker , C. Dominik , M. Min 2016
High-contrast scattered light observations have revealed the surface morphology of several dozens of protoplanetary disks at optical and near-infrared wavelengths. Inclined disks offer the opportunity to measure part of the phase function of the dust grains that reside in the disk surface which is essential for our understanding of protoplanetary dust properties and the early stages of planet formation. We aim to construct a method which takes into account how the flaring shape of the scattering surface of an (optically thick) protoplanetary disk projects onto the image plane of the observer. This allows us to map physical quantities (scattering radius and scattering angle) onto scattered light images and retrieve stellar irradiation corrected (r^2-scaled) images and dust phase functions. We apply the method on archival polarized intensity images of the protoplanetary disk around HD 100546 that were obtained with VLT/SPHERE in R-band and VLT/NACO in H- and Ks-band. The brightest side of the r^2-scaled R-band polarized intensity image of HD 100546 changes from the far to the near side of the disk when a flaring instead of a geometrically flat disk surface is used for the r^2-scaling. The decrease in polarized surface brightness in the scattering angle range of ~40-70 deg is likely a result of the dust phase function and degree of polarization which peak in different scattering angle regimes. The derived phase functions show part of a forward scattering peak which indicates that large, aggregate dust grains dominate the scattering opacity in the disk surface. Projection effects of a protoplanetary disk surface need to be taken into account to correctly interpret scattered light images. Applying the correct scaling for the correction of stellar irradiation is crucial for the interpretation of the images and the derivation of the dust properties in the disk surface layer.
Debris disks or belts are important signposts for the presence of colliding planetesimals and, therefore, for ongoing planet formation and evolution processes in young planetary systems. Imaging of debris material at small separations from the star i s very challenging but provides valuable insights into the spatial distribution of so-called hot dust produced by solid bodies located in or near the habitable zone. We report the first detection of scattered light from the hot dust around the nearby (d = 28.33 pc) A star HD 172555. We want to constrain the geometric structure of the detected debris disk using polarimetric differential Imaging (PDI) with a spatial resolution of 25 mas and an inner working angle of about 0.1$$. We measured the polarized light of HD 172555, with SPHERE-ZIMPOL, in the very broad band (VBB; $lambda=735$ nm) filter for the projected separations between 0.08$$ (2.3 au) and 0.77$$ (22 au). We constrained the disk parameters by fitting models for scattering of an optically thin dust disk taking the limited spatial resolution and coronagraphic attenuation of our data into account. The geometric structure of the disk in polarized light shows roughly the same orientation and outer extent as obtained from thermal emission at 18 $mu$m. Our image indicates the presence of a strongly inclined ($isim 103.5^circ$), roughly axisymmetric dust belt with an outer radius in the range between 0.3$$ (8.5 au) and 0.4$$ (11.3 au). We derive a lower limit for the polarized flux contrast ratio for the disk of $(F_{rm pol})_{rm disk}/F_{rm ast}> (6.2 pm 0.6)cdot 10^{-5}$ in the VBB filter. This ratio is small, only 9 %, when compared to the fractional infrared flux excess ($approx 7.2cdot 10^{-4}$). The model simulations show that more polarized light could be produced by the dust located inside 2 au, which cannot be detected with the instrument configuration used.
Using the POLISH instrument, I am unable to reproduce the large-amplitude polarimetric observations of Berdyugina et al. (2008) to the >99.99% confidence level. I observe no significant polarimetric variability in the HD 189733 system, and the upper limit to variability from the exoplanet is Delta_P < 7.9 x 10^(-5) with 99% confidence in the 400 nm to 675 nm wavelength range. Berdyugina et al. (2008) report polarized, scattered light from the atmosphere of the HD 189733b hot Jupiter with an amplitude of two parts in 10^4. Such a large amplitude is over an order of magnitude larger than expected given a geometric albedo similar to other hot Jupiters. However, my non-detection of polarimetric variability phase-locked to the orbital period of the exoplanet, and the lack of any significant variability, shows that the polarimetric modulation reported by Berdyugina et al. (2008) cannot be due to the exoplanet.
We have obtained Hubble Space Telescope (HST) coronagraphic observations of the circumstellar disk around M star TWA 7 using the STIS instrument in visible light. Together with archival observations including HST/NICMOS using the F160W filter and Ver y Large Telescope/SPHERE at $H$-band in polarized light, we investigate the system in scattered light. By studying this nearly face-on system using geometric disk models and Henyey--Greenstein phase functions, we report new discovery of a tertiary ring and a clump. We identify a layered architecture: three rings, a spiral, and an ${approx}150$ au$^2$ elliptical clump. The most extended ring peaks at $28$ au, and the other components are on its outskirts. Our point source detection limit calculations demonstrate the necessity of disk modeling in imaging fainter planets. Morphologically, we witness a clockwise spiral motion, and the motion pattern is consistent with both solid body and local Keplerian; we also observe underdensity regions for the secondary ring that might result from mean motion resonance or moving shadows: both call for re-observations to determine their nature. Comparing multi-instrument observations, we obtain blue STIS-NICMOS color, STIS-SPHERE radial distribution peak difference for the tertiary ring, and high SPHERE-NICMOS polarization fraction; these aspects indicate that TWA 7 could retain small dust particles. By viewing the debris disk around M star TWA 7 at a nearly face-on vantage point, our study allows for the understanding of such disks in scattered light in both system architecture and dust property.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا