ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybridization and interference effects for localized superconducting states in strong magnetic field

145   0   0.0 ( 0 )
 نشر من قبل Alexei Yu. Aladyshkin
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Within the Ginzburg-Landau model we study the critical field and temperature enhancement for crossing superconducting channels formed either along the sample edges or domain walls in thin-film magnetically coupled superconducting - ferromagnetic bilayers. The corresponding Cooper pair wave function can be viewed as a hybridization of two order parameter (OP) modes propagating along the boundaries and/or domain walls. Different momenta of hybridized OP modes result in the formation of vortex chains outgoing from the crossing point of these channels. Near this crossing point the wave functions of the modes merge giving rise to the increase in the critical temperature for a localized superconducting state. The origin of this critical temperature enhancement caused by the wave function squeezing is illustrated for a limiting case of approaching parallel boundaries and/or domain walls. Using both the variational method and numerical simulations we have studied the critical temperature dependence and OP structure vs the applied magnetic field and the angle between the crossing channels.



قيم البحث

اقرأ أيضاً

We present an experimental study of two-dimensional superconducting quantum interference filters (2D-SQIFs) in the presence of a magnetic field B. The dependences of the dc voltage on the applied magnetic field are characterized by a unique delta-lik e dip at B=0, which depends on the distribution of the areas of the individual loops, and on the bias current. The voltage span of the dip scales proportional to the number of rows simultaneously operating at the same working point. In addition, the voltage response of the 2D-SQIF is sensitive to a field gradient generated by a control line and superimposed to the homogeneous field coil. This feature opens the possibility to use 2D superconducting quantum interference filters as highly sensitive detectors of spatial gradients of magnetic field.
Spin-dependent scattering from magnetic impurities inside a superconductor gives rise to Yu-Shiba-Rusinov (YSR) states within the superconducting gap. As such, YSR states have been very successfully modeled with an effective scattering potential (Kon do impurity model). Using a scanning tunneling microscope, we exploit the proximity of the tip to a surface impurity and its influence on the YSR state to make a quantitative connection between the YSR state energy and the impurity-substrate hybridization. We corroborate the coupling between impurity and substrate as a key energy scale for surface derived YSR states using the Anderson impurity model in the mean field approximation, which accurately explains our observations. The model allows to decide on which side of the quantum phase transition the system resides based on additional conductance measurements. We propose that the Anderson impurity model is much more appropriate to describe YSR states from impurities on a superconducting surface than the Kondo impurity model, which is more appropriate for impurities inside a superconductor. We thus provide a first step towards a more quantitative comparison of experimental data with fully correlated calculations based on the Anderson impurity model.
390 - V. Humbert , M. Aprili , J. Hammer 2012
An extended Josephson junction consists of two superconducting electrodes that are separated by an insulator and it is therefore also a microwave cavity. The superconducting phase difference across the junction determines the supercurrent as well as its spatial distribution. Both, an external magnetic field and a resonant cavity intrafield produce a spatial modification of the superconducting phase along the junction. The interplay between these two effects leads to interference in the critical current of the junction and allows us to continuously tune the coupling strength between the first cavity mode and the Josephson phase from 1 to -0.5. This enables static and dynamic control over the junction in the ultra-strong coupling regime.
441 - I. Swiecicki , C. Ulysse , T. Wolf 2011
We have developed a masked ion irradiation technique to engineer the energy landscape for vortices in oxide superconductors. This approach associates the possibility to design the landscape geometry at the nanoscale with the unique capability to adju st depth of the energy wells for vortices. This enabled us to unveil the key role of vortex channeling in modulating the amplitude of the field matching effects with the artificial energy landscape, and to make the latter govern flux dynamics over an usually wide range of temperatures and applied fields.
We investigate the Josephson critical current $I_c(Phi)$ of a wide superconductor-normal metal-superconductor (SNS) junction as a function of the magnetic flux $Phi$ threading it. Electronic trajectories reflected from the side edges alter the functi on $I_c(Phi)$ as compared to the conventional Fraunhofer-type dependence. At weak magnetic fields, $Blesssim Phi_0/d^2$, the edge effect lifts zeros in $I_c(Phi)$ and gradually shifts the minima of that function toward half-integer multiples of the flux quantum. At $B>Phi_0/d^2$, the edge effect leads to an accelerated decay of the critical current $I_c(Phi)$ with increasing $Phi$. At larger fields, eventually, the system is expected to cross into a regime of classical mesoscopic fluctuations that is specific for wide ballistic SNS junctions with rough edges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا