ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimization of sample-chip design for stub-matched radio-frequency reflectometry measurements

164   0   0.0 ( 0 )
 نشر من قبل Sarah Hellm\\\"uller
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A radio-frequency (rf) matching circuit with an in situ tunable varactor diode used for rf reflectometry measurements in semiconductor nanostructures is investigated and used to optimize the sample-specific chip design. The samples are integrated in a 2-4 GHz stub-matching circuit consisting of a waveguide stub shunted to the terminated coplanar waveguide. Several quantum point contacts fabricated on a GaAs/AlGaAs heterostructure with different chip designs are compared. We show that the change of the reflection coefficient for a fixed change in the quantum point contact conductance can be enhanced by a factor of 3 compared to conventional designs by a suitable electrode geometry.



قيم البحث

اقرأ أيضاً

RF reflectometry offers a fast and sensitive method for charge sensing and spin readout in gated quantum dots. We focus in this work on the implementation of RF readout in accumulation-mode gate-defined quantum dots, where the large parasitic capacit ance poses a challenge. We describe and test two methods for mitigating the effect of the parasitic capacitance, one by on-chip modifications and a second by off-chip changes. We demonstrate that these methods enable high-performance charge readout in Si/SiGe quantum dots, achieving a fidelity of 99.9% for a measurement time of 1 $mu$s.
We have embedded an AlGaAs/GaAs based, gated 2D hole system (2DHS) into an impedance transformer $LC$ circuit, and show that by using radio-frequency reflectometry it is possible to perform sensitive, large bandwidth, electrical resistance measuremen ts of 2D systems at mK temperatures. We construct a simple lumped element model where the gated 2DHS is described as a resistive transmission line. The model gives a qualitative understanding of the experimental results. As an example, we use our method to map out the Landau level evolution in a 2DHS as a function of magnetic field and gate voltage.
544 - W. W. Xue , Z. Ji , B. Davis 2007
In this letter, we describe operation of a radio-frequency superconducting single electron transistor (RF-SSET) with an on-chip superconducting LC matching network consisting of a spiral inductor L and its capacitance to ground. The superconducting n etwork has a lower parasitic capacitance and gives a better matching for the RF-SSET than does a commercial chip inductor. Moreover, the superconducting network has negligibly low dissipation, leading to sensitive response to changes in the RF-SSET impedance. The charge sensitivity 2.4*10^-6 e/(Hz)^1/2 in the sub-gap region and energy sensitivity of 1.9 hbar indicate that the RF-SSET is operating in the vicinity of the shot noise limit.
Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena due to their charge stability and robust electronic prop erties after thermal cycling. However these devices require a large top-gate which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here we demonstrate rf reflectometry is possible in an undoped SET.
279 - F. Couedo , L. Berge , L. Dumoulin 2018
The characteristic frequencies of a system provide important information on the phenomena that govern its physical properties. In this framework, there has recently been renewed interest in cryogenic microwave characterization for condensed matter sy stems since it allows to probe energy scales of the order of a few $mu$eV. However, broadband measurements of the absolute value of a sample response in this frequency range are extremely sensitive to its environment and require a careful calibration. In this paper, we present an textit{in situ} calibration method for cryogenic broadband microwave reflectometry experiments that is both simple to implement and through which the effect of the sample electromagnetic environment can be minimized. The calibration references are here provided by the sample itself, at three reference temperatures where its impedance is assumed or measured, and not by external standards as is usual. We compare the frequency-dependent complex impedance (0.1--2 GHz) of an a-Nb$_{15}$Si$_{85}$ superconducting thin film obtained through this Sample-Based Calibration (SBC) and through an Open-Short-Load Standard Calibration (SC) when working at very low temperature (0.02--4 K) and show that the SBC allows us to obtain the absolute response of the sample. This method brings the calibration planes as close as possible to the sample, so that the environment electrodynamic response does not affect the measurement, provided it is temperature independent. This results in a heightened sensitivity, for a given experimental set--up.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا