ترغب بنشر مسار تعليمي؟ اضغط هنا

Circuit QED using a semiconductor double quantum dot

291   0   0.0 ( 0 )
 نشر من قبل Hiraku Toida
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Vacuum Rabi splitting is observed in a coupled qubit-resonator system consisting of a GaAs double quantum dot and a coplanar waveguide resonator. Derived values of the qubit-resonator coupling strength and the decoherence rate indicate strong coupling, which assures distinct vacuum Rabi oscillation in the system. The amplitude of decoherence is reasonably interpreted in terms of the coupling of electrons to piezoelectric acoustic phonons in GaAs.



قيم البحث

اقرأ أيضاً

We propose a scheme based on using the singlet ground state of an electron spin pair in a double quantum dot nanostructure as a suitable set-up for detecting entanglement between electron spins via the measurement of an optimal entanglement witness. Using time-dependent gate voltages and magnetic fields the entangled spins are separated and coherently rotated in the quantum dots and subsequently detected at spin-polarized quantum point contacts. We analyze the coherent time evolution of the entangled pair and show that by counting coincidences in the four exits an entanglement test can be done. This set-up is close to present-day experimental possibilities and can be used to produce pairs of entangled electrons ``on demand.
Interacting fermions on a lattice can develop strong quantum correlations, which lie at the heart of the classical intractability of many exotic phases of matter. Seminal efforts are underway in the control of artificial quantum systems, that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical pure-state initialisation and readily adhere to an engineerable Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder inherent to solid state has made attempts at emulating Fermi-Hubbard physics on solid-state platforms few and far between. Here, we show that for gate-defined quantum dots, this disorder can be suppressed in a controlled manner. Novel insights and a newly developed semi-automated and scalable toolbox allow us to homogeneously and independently dial in the electron filling and nearest-neighbour tunnel coupling. Bringing these ideas and tools to fruition, we realize the first detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here show how quantum dots can be used to investigate the physics of ever more complex many-body states.
We present a theoretical study of a hybrid circuit-QED system composed of two semiconducting charge-qubits confined in a microwave resonator. The qubits are defined in terms of the charge states of two spatially separated double quantum dots (DQDs) w hich are coupled to the same photon mode in the microwave resonator. We analyze a transport setup where each DQD is attached to electronic reservoirs and biased out-of-equilibrium by a large voltage, and study how electron transport across each DQD is modified by the coupling to the common resonator. In particular, we show that the inelastic current through each DQD reflects an indirect qubit-qubit interaction mediated by off-resonant photons in the microwave resonator. As a result of this interaction, both charge qubits stay entangled in the steady (dissipative) state. Finite shot noise cross-correlations between currents across distant DQDs are another manifestation of this nontrivial steady-state entanglement.
We introduce a systematic formalism for two-resonator circuit QED, where two on-chip microwave resonators are simultaneously coupled to one superconducting qubit. Within this framework, we demonstrate that the qubit can function as a quantum switch b etween the two resonators, which are assumed to be originally independent. In this three-circuit network, the qubit mediates a geometric second-order circuit interaction between the otherwise decoupled resonators. In the dispersive regime, it also gives rise to a dynamic second-order perturbative interaction. The geometric and dynamic coupling strengths can be tuned to be equal, thus permitting to switch on and off the interaction between the two resonators via a qubit population inversion or a shifting of the qubit operation point. We also show that our quantum switch represents a flexible architecture for the manipulation and generation of nonclassical microwave field states as well as the creation of controlled multipartite entanglement in circuit QED. In addition, we clarify the role played by the geometric interaction, which constitutes a fundamental property characteristic of superconducting quantum circuits without counterpart in quantum-optical systems. We develop a detailed theory of the geometric second-order coupling by means of circuit transformations for superconducting charge and flux qubits. Furthermore, we show the robustness of the quantum switch operation with respect to decoherence mechanisms. Finally, we propose a realistic design for a two-resonator circuit QED setup based on a flux qubit and estimate all the related parameters. In this manner, we show that this setup can be used to implement a superconducting quantum switch with available technology.
We use a double quantum dot as a frequency-tunable on-chip microwave detector to investigate the radiation from electron shot-noise in a near-by quantum point contact. The device is realized by monitoring the inelastic tunneling of electrons between the quantum dots due to photon absorption. The frequency of the absorbed radiation is set by the energy separation between the dots, which is easily tuned with gate voltages. Using time-resolved charge detection techniques, we can directly relate the detection of a tunneling electron to the absorption of a single photon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا