ﻻ يوجد ملخص باللغة العربية
Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. The most relevant mechanism of coherent coupling of distant qubits is coupling via the electromagnetic field. Here, we demonstrate the controlled coherent coupling of spatially separated excitonic qubits via the photon mode of a solid state microresonator. This is revealed by two-dimensional spectroscopy of the samples coherent response, a sensitive and selective probe of the coherent coupling. The experimental results are quantitatively described by a rigorous theory of the cavity mediated coupling within a cluster of quantum dots excitons. Having demonstrated this mechanism, it can be used in extended coupling channels - sculptured, for instance, in photonic crystal cavities - to enable a long-range, non-local wiring up of individual emitters in solids.
It is considered the indirect inter-qubit coupling in 1D chain of atoms with nuclear spins 1/2, which plays role of qubits in the quantum register. This chain of the atoms is placed by regular way in easy-axis 3D antiferromagnetic thin plate substrat
We propose and experimentally demonstrate a scheme for implementation of a maximally entangling quantum controlled-Z gate between two weakly interacting systems. We conditionally enhance the interqubit coupling by quantum interference. Both before an
Optical control of exciton fluxes is realized for indirect excitons in a crossed-ramp excitonic device. The device demonstrates experimental proof of principle for all-optical excitonic transistors with a high ratio between the excitonic signal at th
To realize fault-tolerant quantum computing, it is necessary to store quantum information in logical qubits with error correction functions, realized by distributing a logical state among multiple physical qubits or by encoding it in the Hilbert spac
We study a hybrid quantum system consisting of spin ensembles and superconducting flux qubits, where each spin ensemble is realized using the nitrogen-vacancy centers in a diamond crystal and the nearest-neighbor spin ensembles are effectively couple