ترغب بنشر مسار تعليمي؟ اضغط هنا

Optically Controlled Excitonic Transistor

141   0   0.0 ( 0 )
 نشر من قبل Yuliya Kuznetsova
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical control of exciton fluxes is realized for indirect excitons in a crossed-ramp excitonic device. The device demonstrates experimental proof of principle for all-optical excitonic transistors with a high ratio between the excitonic signal at the optical drain and the excitonic signal due to the optical gate. The device also demonstrates experimental proof of principle for all-optical excitonic routers.



قيم البحث

اقرأ أيضاً

In a family of experiments carried on all-metallic supercurrent nano-transistors a surprising gating effect has been recently shown. These include the full suppression of the critical supercurrent, the increase of quasiparticle population, the manipu lation of the superconducting phase, and the broadening of the switching current distributions. Aside from the high potential for future applications, these findings raised fundamental questions on the origin of these phenomena. To date, two complementary hypotheses are under debate: an electrostatically-triggered orbital polarization at the superconductor surface, or the injection of highly-energetic quasiparticles extracted from the gate. Here, we tackle this crucial issue via a fully suspended gate-controlled Ti nano-transistor. Our geometry allows to eliminate any direct injection of quasiparticles through the substrate thereby making cold electron field emission through the vacuum the only possible charge transport mechanism. With the aid of a fully numerical 3D model in combination with the observed phenomenology and thermal considerations we can rule out, with any realistic likelihood, the occurrence of cold electron field emission. Excluding these two trivial phenomena is pivotal in light of understanding the microscopic nature of gating effect in superconducting nanostructures, which represents an unsolved puzzle in contemporary superconductivity. Yet, from the technological point of view, our suspended fabrication technique provides the enabling technology to implement a variety of applications and fundamental studies combining, for instance, superconductivity with nano-mechanics.
We demonstrated theoretically that a circularly polarized electromagnetic field substantially modifies electronic properties of a periodical chain of quantum rings. Particularly, the field opens band gaps in the electron energy spectrum of the chain, generates edge electron currents and induces the Fano-like features in the electron transport through the finite chain. These effects create physical prerequisites for the development of optically controlled nanodevices based on a set of coupled quantum rings.
Graphene has extraordinary electronic and optical properties and holds great promise for applications in photonics and optoelectronics. Demonstrations including high-speed photodetectors, optical modulators, plasmonic devices, and ultrafast lasers ha ve now been reported. More advanced device concepts would involve photonic elements such as cavities to control light-matter interaction in graphene. Here we report the first monolithic integration of a graphene transistor and a planar, optical microcavity. We find that the microcavity-induced optical confinement controls the efficiency and spectral selection of photocurrent generation in the integrated graphene device. A twenty-fold enhancement of photocurrent is demonstrated. The optical cavity also determines the spectral properties of the electrically excited thermal radiation of graphene. Most interestingly, we find that the cavity confinement modifies the electrical transport characteristics of the integrated graphene transistor. Our experimental approach opens up a route towards cavity-quantum electrodynamics on the nanometre scale with graphene as a current-carrying intra-cavity medium of atomic thickness.
Quantum technologies involving qubit measurements based on electronic interferometers rely critically on accurate single-particle emission. However, achieving precisely timed operations requires exquisite control of the single-particle sources in the time domain. Here, we demonstrate accurate control of the emission time statistics of a dynamic single-electron transistor by measuring the waiting times between emitted electrons. By ramping up the modulation frequency, we controllably drive the system through a crossover from adiabatic to nonadiabatic dynamics, which we visualize by measuring the temporal fluctuations at the single-electron level and explain using detailed theory. Our work paves the way for future technologies based on the ability to control, transmit, and detect single quanta of charge or heat in the form of electrons, photons, or phonons.
We investigated the dynamics of the interaction between spin-polarized photo-created carriers and Mn ions on InGaAs/GaAs:Mn structures. The carriers are confined in an InGaAs quantum well and the Mn ions come from a Mn delta-layer grown at the GaAs b arrier close to the well. Even though the carriers and the Mn ions are spatially separated, the interaction between them is demonstrated by time-resolved spin-polarized photoluminescence measurements. Using a pre-pulse laser excitation with an opposite circular-polarization clearly reduces the polarization degree of the quantum-well emission for samples where a strong magnetic interaction is observed. The results demonstrate that the Mn ions act as a spin-memory that can be optically controlled by the polarization of the photocreated carriers. On the other hand, the spin-polarized Mn ions also affect the spin-polarization of the subsequently created carriers as observed by their spin relaxation time. These effects fade away with increasing time delays between the pulses as well as with increasing temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا