ﻻ يوجد ملخص باللغة العربية
We have experimentally studied the degradation of mode purity for light beams carrying orbital angular momentum (OAM) propagating through simulated atmospheric turbulence. The turbulence is modeled as a randomly varying phase aberration, which obeys statistics postulated by Kolmogorov turbulence theory. We introduce this simulated turbulence through the use of a phase-only spatial light modulator. Once the turbulence is introduced, the degradation in mode quality results in cross-talk between OAM modes. We study this cross-talk in OAM for eleven modes, showing that turbulence uniformly degrades the purity of all the modes within this range, irrespective of mode number.
We describe an experimental implementation of a free-space 11-dimensional communication system using orbital angular momentum (OAM) modes. This system has a maximum measured OAM channel capacity of 2.12 bits/photon. The effects of Kolmogorov thin-pha
Light beam with optical vortices can propagate in free space only with integer orbital angular momentum. Here, we invert this scientific consensus theoretically and experimentally by proposing light beams carrying natural non-integer orbital angular
Manipulation of orbital angular momentum (OAM) of light is essential in OAM-based optical systems. Especially, OAM divider, which can convert the incoming OAM mode into one or several new smaller modes in proportion at different spatial paths, is ver
We describe a procedure by which a long ($gtrsim 1,mathrm{km}$) optical path through atmospheric turbulence can be experimentally simulated in a controlled fashion and scaled down to distances easily accessible in a laboratory setting. This procedure
The existing methods for measuring the orbital-angular-momentum (OAM) spectrum suffer from issues such as poor efficiency, strict interferometric stability requirements, and too much loss. Furthermore, most techniques inevitably discard part of the f