ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of Atmospheric Turbulence on Optical Communications using Orbital Angular Momentum for Encoding

161   0   0.0 ( 0 )
 نشر من قبل Mehul Malik
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe an experimental implementation of a free-space 11-dimensional communication system using orbital angular momentum (OAM) modes. This system has a maximum measured OAM channel capacity of 2.12 bits/photon. The effects of Kolmogorov thin-phase turbulence on the OAM channel capacity are quantified. We find that increasing the turbulence leads to a degradation of the channel capacity. We are able to mitigate the effects of turbulence by increasing the spacing between detected OAM modes. This study has implications for high-dimensional quantum key distribution (QKD) systems. We describe the sort of QKD system that could be built using our current technology.



قيم البحث

اقرأ أيضاً

We have experimentally studied the degradation of mode purity for light beams carrying orbital angular momentum (OAM) propagating through simulated atmospheric turbulence. The turbulence is modeled as a randomly varying phase aberration, which obeys statistics postulated by Kolmogorov turbulence theory. We introduce this simulated turbulence through the use of a phase-only spatial light modulator. Once the turbulence is introduced, the degradation in mode quality results in cross-talk between OAM modes. We study this cross-talk in OAM for eleven modes, showing that turbulence uniformly degrades the purity of all the modes within this range, irrespective of mode number.
Satellite-based quantum communications enable a bright future for global-scale information security. However, the spin orbital momentum of light, currently used in many mainstream quantum communication systems, only allows for quantum encoding in a t wo-dimensional Hilbert space. The orbital angular momentum (OAM) of light, on the other hand, enables quantum encoding in higher-dimensional Hilbert spaces, opening up new opportunities for high-capacity quantum communications. Due to its turbulence-induced decoherence effects, however, the atmospheric channel may limit the practical usage of OAM. In order to determine whether OAM is useful for satellite-based quantum communications, we numerically investigate the detection likelihoods for OAM states that traverse satellite-to-ground channels. We show that the use of OAM through such channels is in fact feasible. We use our new results to then investigate design specifications that could improve OAM detection - particularly the use of advanced adaptive optics techniques. Finally, we discuss how our work provides new insights into future implementations of space-based OAM systems within the context of quantum communications.
Quantum key distribution (QKD) employed orbital angular momentum (OAM) for high-dimensional encoding enhances the system security and information capacity between two communication parties. However, such advantages significantly degrade because of th e fragility of OAM states in atmospheric turbulence. Unlike previous researches, we first investigate the performance degradation of OAM-based QKD by infinitely long phase screen (ILPS), which offers a feasible way to study how adaptive optics (AO) dynamically corrects the turbulence-induced aberrations in real time. Secondly, considering the failure of AO while encountering phase cuts, we evaluate the quality enhancement of OAM-based QKD under moderate turbulence strengths by AO after implementing the wrapped cuts elimination. Finally, we simulate that, with more realistic considerations, real-time AO can still mitigate the impact of atmospheric turbulence on OAM-based QKD even in the large wind velocity regime.
Experimental results from the generation of Raman sidebands using optical vortices are presented. By generating two sets of sidebands originating from different locations in a Raman active crystal, one set containing optical orbital angular momentum and the other serving as a reference, a Youngs double slit experiment was simultaneously realized for each sideband. The interference between the two sets of sidebands was used to determine the helicity and topological charge in each order. Topological charges in all orders were found to be discrete and follow selection rules predicted by a cascaded Raman process.
Among the optical degrees of freedom, the orbital angular momentum of light provides unique properties, including mechanical torque action with applications for light manipulation, enhanced sensitivity in imaging techniques and potential high-density information coding for optical communication systems. Recent years have also seen a tremendous interest in exploiting orbital angular momentum at the single-photon level in quantum information technologies. In this endeavor, here we demonstrate the implementation of a quantum memory for quantum bits encoded in this optical degree of freedom. We generate various qubits with computer-controlled holograms, store and retrieve them on demand. We further analyse the retrieved states by quantum tomography and thereby demonstrate fidelities exceeding the classical benchmark, confirming the quantum functioning of our storage process. Our results provide an essential capability for future networks exploring the promises of orbital angular momentum of photons for quantum information applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا