ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Distance to M33 Using Blue Supergiants and the FGLR Method

105   0   0.0 ( 0 )
 نشر من قبل Vivian U
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Vivian U




اسأل ChatGPT حول البحث

The quantitative spectral analysis of medium resolution optical spectra of A and B supergiants obtained with DEIMOS and ESI at the Keck Telescopes is used to determine a distance modulus of 24.93 +/- 0.11 mag for the Triangulum Galaxy M33. The analysis yields stellar effective temperatures, gravities, interstellar reddening, and extinction, the combination of which provides a distance estimate via the Flux-weighted Gravity--Luminosity Relationship (FGLR). This result is based on an FGLR calibration that is continually being polished. An average reddening of <E(B-V)> ~ 0.08 mag is found, with a large variation ranging from 0.01 to 0.16 mag however, demonstrating the importance of accurate individual reddening measurements for stellar distance indicators in galaxies with evident signatures of interstellar absorption. The large distance modulus found is in good agreement with recent work on eclipsing binaries, planetary nebulae, long period variables, RR Lyrae stars, and also with HST observations of Cepheids, if reasonable reddening assumptions are made for the Cepheids. Since distances based on the tip of the red giant branch (TRGB) method found in the literature give conflicting results, we have used HST ACS V- and I-band images of outer regions of M 33 to determine a TRGB distance of 24.84 +/- 0.10 mag, in basic agreement with the FGLR result. We have also determined stellar metallicities and discussed the metallicity gradient in the disk of M33. We find metallicity of $Z_odot$ at the center and 0.3 $Z_odot$ in the outskirts at a distance of one isophotal radius. The average logarithmic metallicity gradient is -0.07 +/- 0.01 dex kpc^-1. However, there is a large scatter around this average value, very similar to what has been found for the HII regions in M33.



قيم البحث

اقرأ أيضاً

93 - Yi Ren 2020
The aim of this paper is to establish a complete sample of red supergiants (RSGs) in M31 and M33. The member stars of the two galaxies are selected from the near-infrared (NIR) point sources after removing the foreground dwarfs from their obvious bra nch in the $J-H/H-K$ diagram with the archival photometric data taken by the UKIRT/WFCAM. This separation by NIR colors of dwarfs from giants is confirmed by the optical/infrared color-color diagrams ($r-z/z-H$ and $B-V/V-R$), and the Gaia measurement of parallax and proper motion. The RSGs are then identified by their outstanding location in the members $J-K/K$ diagram due to high luminosity and low effective temperature. The resultant sample has 5,498 and 3,055 RSGs in M31 and M33 respectively, which should be complete because the lower limiting $K$ magnitude of RSGs in both cases is brighter than the complete magnitude of the UKIRT photometry. Analysis of the control fields finds that the pollution rate in the RSGs sample is less than 1%. The by-product is the complete sample of oxygen-rich asymptotic giant branch stars (AGBs), carbon-rich AGBs, thermally pulsing AGBs and extreme AGBs. In addition, the tip-RGB is determined together with its implication on the distance modulus to M31 and M33.
430 - V. Scowcroft 2009
We present the results from a multi-epoch survey of two regions of M33 using the 3.5m WIYN telescope. The inner field is located close to the centre of the galaxy, with the outer region situated about 5.1 kpc away in the southern spiral arm, allowing us to sample a large metallicity range. We have data for 167 fundamental mode Cepheids in the two regions. The reddening-free Wesenheit magnitude Wvi period-luminosity relations were used to establish the distance modulus of each region, with mu_{inner} = 24.37 +- 0.02 mag and mu_{outer} = 24.54 +- 0.03 mag. The apparent discrepancy between these two results can be explained by the significant metallicity gradient of the galaxy. We determine a value for the metallicity parameter of the Period--Luminosity relation gamma = d(m-M)/d log(Z) = -0.29 +- 0.11 mag/dex, consistent with previous measurements. This leads to a metallicity corrected distance modulus to M33 of 24.53 +- 0.11 mag.
79 - Yi Ren 2019
Based on previously selected preliminary samples of Red Supergiants (RSGs) in M33 and M31, the foreground stars and luminous Asymptotic Giant Branch stars (AGBs) are further excluded, which leads to the samples of 717 RSGs in M33 and 420 RSGs in M31. With the time-series data from the iPTF survey spanning nearly 2000 days, the period and amplitude of RSGs are analyzed. According to the lightcurves characteristics, they are classified into four categories in which 84 and 56 objects in M33 and M31 respectively are semi-regular variables. For these semi-regular variables, the pulsation mode is identified by comparing with the theoretical model, which yielded 19 (7) sources in the first overtone mode in M33 (M31), and the other 65 (49) RSGs in M33 (M31) in the fundamental mode. The period-luminosity (P-L) relation is analyzed for the RSGs in the fundamental mode. It is found the P-L relation is tight in the infrared, i.e. the 2MASS $JHK_{rm S}$ bands and the short-wavelength bands of Spitzer. Meanwhile, the inhomogeneous extinction causes the P-L relation scattering in the $V$ band, and the dust emission causes the less tight P-L relation in the Spitzer/[8.0] and [24] bands. The derived P-L relations in the 2MASS/$K_{rm S}$ band are in agreement with those of RSGs in SMC, LMC and the Milky Way within the uncertainty range. It is found that the number ratio of RSGs pulsating in the fundamental mode to the first overtone mode increases with metallicity.
Mass loss is an important activity for red supergiants (RSGs) which can influence their evolution and final fate. Previous estimations of mass loss rates (MLRs) of RSGs exhibit significant dispersion due to the difference in method and the incomplete ness of sample. With the improved quality and depth of the surveys including the UKIRT/WFCAM observation in near infrared, LGGS and PS1 in optical, a rather complete sample of RSGs is identified in M31 and M33 according to their brightness and colors. For about 2000 objects in either galaxy from this ever largest sample, the MLR is derived by fitting the observational optical-to-mid infrared spectral energy distribution (SED) with the DUSTY code of a 1-D dust radiative transfer model. The average MLR of RSGs is found to be around $2.0times10^{-5}{text{M}_odot}/text{yr}$ with a gas-to-dust ratio of 100, which yields a total contribution to the interstellar dust by RSGs of about $1.1times10^{-3}{text{M}_odot}/text{yr}$ in M31 and $6.0 times10^{-4}{text{M}_odot}/text{yr}$ in M33, a non-negligible source in comparison with evolved low-mass stars. The MLRs are divided into three types by the dust properties, i.e. amorphous silicate, amorphous carbon and optically thin, and the relations of MLR with stellar parameters, infrared flux and colors are discussed and compared with previous works for the silicate and carbon dust group respectively.
Motivated by an amazing range of reported distances to the nearby Local Group spiral galaxy M33, we have obtained deep near-infrared photometry for 26 long-period Cepheids in this galaxy with the ESO VLT. From the data we constructed period-luminosit y relations in the J and K bands which together with previous optical VI photometry for the Cepheids by Macri et al. were used to determine the true distance modulus of M33, and the mean reddening affecting the Cepheid sample with the multiwavelength fit method developed in the Araucaria Project. We find a true distance modulus of 24.62 for M33, with a total uncertainty of +- 0.07 mag which is dominated by the uncertainty on the photometric zero points in our photometry. The reddening is determined as E(B-V)=0.19 +- 0.02, in agreement with the value used by the HST Key Project of Freedman et al. but in some discrepancy with other recent determinations based on blue supergiant spectroscopy and an O-type eclipsing binary which yielded lower reddening values. Our derived M33 distance modulus is extremely insensitive to the adopted reddening law. We show that the possible effects of metallicity and crowding on our present distance determination are both at the 1-2% level and therefore minor contributors to the total uncertainty of our distance result for M33.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا