ترغب بنشر مسار تعليمي؟ اضغط هنا

On the clustering of finite-size particles in turbulence

133   0   0.0 ( 0 )
 نشر من قبل Lionel Fiabane
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate experimentally the spatial distributions of heavy and neutrally buoyant particles of finite size in a fully turbulent flow. As their Stokes number (i.e. ratio of the particle viscous relaxation time to a typical flow time scale) is close to 1, one may expect both classes of particles to aggregate in specific flow regions. This is not observed. Using a Voronoi analysis we show that neutrally buoyant particles sample turbulence homogeneously, whereas heavy particles do cluster. One implication for the understanding and modeling of particle laden flows, is that the Stokes number cannot be the sole key parameter as soon as the dynamics of finite-size objects is considered.



قيم البحث

اقرأ أيضاً

We study the effect of particle shape on the turbulence in suspensions of spheroidal particles at volume fraction $phi = 10%$ and show how the near-wall particle dynamics deeply changes with the particle aspect ratio and how this affects the global s uspension behavior. The turbulence reduces with the aspect ratio of oblate particles, leading to drag reduction with respect to the single phase flow for particles with aspect ratio $mathcal{AR}leq1/3$, when the significant reduction in Reynolds shear stress is more than the compensation by the additional stresses, induced by the solid phase. Oblate particles are found to avoid the region close to the wall, travelling parallel to it with small angular velocities, while preferentially sampling high-speed fluid in the wall region. Prolate particles, also tend to orient parallel to the wall and avoid its vicinity. Their reluctancy to rotate around spanwise axis reduce the wall-normal velocity fluctuation of the flow and therefore the turbulence Reynolds stress similar to oblates; however, they undergo rotations in wall-parallel planes which increases the additional solid stresses due to their relatively larger angular velocities compared to the oblates. These larger additional stresses compensates for the reduction in turbulence activity and leads to a wall-drag similar to that of single-phase flows. Spheres on the other hand, form a layer close to the wall with large angular velocities in spanwise direction, which increases the turbulence activity in addition to exerting the largest solid stresses on the suspension, in comparison to the other studied shapes. Spherical particles therefore increase the wall-drag with respect to the single-phase flow.
107 - Cheng Li , Kaeul Lim , Tim Berk 2020
The effect of turbulence on snow precipitation is not incorporated into present weather forecasting models. Here we show evidence that turbulence is in fact a key influence on both fall speed and spatial distribution of settling snow. We consider thr ee snowfall events under vastly different levels of atmospheric turbulence. We characterize the size and morphology of the snow particles, and we simultaneously image their velocity, acceleration, and relative concentration over vertical planes about 30 m2 in area. We find that turbulence-driven settling enhancement explains otherwise contradictory trends between the particle size and velocity. The estimates of the Stokes number and the correlation between vertical velocity and local concentration indicate that the enhanced settling is rooted in the preferential sweeping mechanism. When the snow vertical velocity is large compared to the characteristic turbulence velocity, the crossing trajectories effect results in strong accelerations. When the conditions of preferential sweeping are met, the concentration field is highly non-uniform and clustering appears over a wide range of scales. These clusters, identified for the first time in a naturally occurring flow, display the signature features seen in canonical settings: power-law size distribution, fractal-like shape, vertical elongation, and large fall speed that increases with the cluster size. These findings demonstrate that the fundamental phenomenology of particle-laden turbulence can be leveraged towards a better predictive understanding of snow precipitation and ground snow accumulation. They also demonstrate how environmental flows can be used to investigate dispersed multiphase flows at Reynolds numbers not accessible in laboratory experiments or numerical simulations.
At finite Reynolds numbers, Re, particles migrate across laminar flow streamlines to their equilibrium positions in microchannels. This migration is attributed to a lift force, and the balance between this lift and gravity determines the location of particles in channels. Here we demonstrate that velocity of finite-size particles located near a channel wall differs significantly from that of an undisturbed flow, and that their equilibrium position depends on this, referred to as slip velocity, difference. We then present theoretical arguments, which allow us to generalize expressions for a lift force, originally suggested for some limiting cases and Re<<1, to finite-size particles in a channel flow at Re < 20. Our theoretical model, validated by lattice Boltzmann simulations, provides considerable insight into inertial migration of finite-size particles in microchannel and suggests some novel microfluidic approaches to separate them by size or density at a moderate Re.
We present a numerical study of settling and clustering of small inertial particles in homogeneous and isotropic turbulence. Particles are denser than the fluid, but not in the limit of being much heavier than the displaced fluid. At fixed Reynolds a nd Stokes numbers we vary the fluid-to-particle mass ratio and the gravitational acceleration. The effect of varying one or the other is similar but not quite the same. We report non-monotonic behavior of the particles velocity skewness and kurtosis with the second parameter, and an associated anomalous behavior of the settling velocity when compared to the free-fall Stokes velocity, including loitering cases. Clustering increases for increasing gravitational acceleration, and for decreasing fluid-to-particle mass ratio.
We investigate the preferential concentration of particles which are neutrally buoyant but with a diameter significantly larger than the dissipation scale of the carrier flow. Such particles are known not to behave as flow tracers (Qureshi et al., Ph ys. Re. Lett. 2007) but whether they do cluster or not remains an open question. For this purpose, we take advantage of a new turbulence generating apparatus, the Lagrangian Exploration Module which produces homogeneous and isotropic turbulence in a closed water flow. The flow is seeded with neutrally buoyant particles with diameter 700mum, corresponding to 4.4 to 17 times the turbulent dissipation scale when the rotation frequency of the impellers driving the flow goes from 2 Hz to 12 Hz, and spanning a range of Stokes numbers from 1.6 to 24.2. The spatial structuration of these inclusions is then investigated by a Voronoi tesselation analysis, as recently proposed by Monchaux et al. (Phys. Fluids 2010), from images of particle concentration field taken in a laser sheet at the center of the flow. No matter the rotating frequency and subsequently the Reynolds and Stokes numbers, the particles are found not to cluster. The Stokes number by itself is therefore shown to be an insufficient indicator of the clustering trend in particles laden flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا