ﻻ يوجد ملخص باللغة العربية
We present a numerical study of settling and clustering of small inertial particles in homogeneous and isotropic turbulence. Particles are denser than the fluid, but not in the limit of being much heavier than the displaced fluid. At fixed Reynolds and Stokes numbers we vary the fluid-to-particle mass ratio and the gravitational acceleration. The effect of varying one or the other is similar but not quite the same. We report non-monotonic behavior of the particles velocity skewness and kurtosis with the second parameter, and an associated anomalous behavior of the settling velocity when compared to the free-fall Stokes velocity, including loitering cases. Clustering increases for increasing gravitational acceleration, and for decreasing fluid-to-particle mass ratio.
The effect of turbulence on snow precipitation is not incorporated into present weather forecasting models. Here we show evidence that turbulence is in fact a key influence on both fall speed and spatial distribution of settling snow. We consider thr
In a seminal article, citet[J. Fluid Mech., 174:441-465]{maxey87} presented a theoretical analysis showing that enhanced particle settling speeds in turbulence occur through the preferential sweeping mechanism, which depends on the preferential sampl
The motion of thin curved falling particles is ubiquitous in both nature and industry but is not yet widely examined. Here, we describe an experimental study on the dynamics of thin cylindrical shells resembling broken bottle fragments settling throu
In this paper we numerically investigate the influence of dissipation during particle collisions in an homogeneous turbulent velocity field by coupling a discrete element method to a Lattice-Boltzmann simulation with spectral forcing. We show that ev
Inertialess anisotropic particles in a Rayleigh-Benard turbulent flow show maximal tumbling rates for weakly oblate shapes, in contrast with the universal behaviour observed in developed turbulence where the mean tumbling rate monotonically decreases