ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing elastic and inelastic breakup contributions to intermediate-energy two-proton removal reactions

146   0   0.0 ( 0 )
 نشر من قبل Kathrin Wimmer
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The two-proton removal reaction from 28Mg projectiles has been studied at 93 MeV/u at the NSCL. First coincidence measurements of the heavy 26Ne projectile residues, the removed protons and other light charged particles enabled the relative cross sections from each of the three possible elastic and inelastic proton removal mechanisms to be determined. These more final-state-exclusive measurements are key for further interrogation of these reaction mechanisms and use of the reaction channel for quantitative spectroscopy of very neutron-rich nuclei. The relative and absolute yields of the three contributing mechanisms are compared to reaction model expectations - based on the use of eikonal dynamics and sd-shell-model structure amplitudes.



قيم البحث

اقرأ أيضاً

419 - K. Wimmer , D. Bazin , A. Gade 2012
We report final-state-exclusive measurements of the light charged fragments in coincidence with 26Ne residual nuclei following the direct two-proton removal from a neutron-rich 28Mg secondary beam. A Dalitz-plot analysis and comparisons with simulati ons show that a majority of the triple- coincidence events with two protons display phase-space correlations consistent with the (two-body) kinematics of a spatially-correlated pair-removal mechanism. The fraction of such correlated events, 56(12) %, is consistent with the fraction of the calculated cross section, 64 %, arising from spin S = 0 two-proton configurations in the entrance-channel (shell-model) 28Mg ground state wave function. This result promises access to an additional and more specific probe of the spin and spatial correlations of valence nucleon pairs in exotic nuclei produced as fast secondary beams.
Vector and tensor analysing powers of the d(pol)p->(pp)n (charge-exchange) and d(pol)p->(pn)p (non-charge-exchange) breakup reactions have been measured with the ANKE spectrometer at the COSY ring at a deuteron beam energy of 1170 MeV for small momen tum transfers to the low excitation energy (pp) or (pn) systems. A quantitative understanding of the values of A_xx and A_yy for the charge-exchange reaction is provided by impulse approximation calculations. The data suggest that spin-flip isospin-flip transitions, which dominate the charge-exchange breakup of the deuteron, are also important in the non-charge-exchange reaction.
Proton elastic scattering and inelastic scattering to the first excited state of 6He have been measured over a wide angular range using a 40.9A MeV 6He beam. The data have been analyzed with a fully microscopic model of proton-nucleus scattering usin g 6He wave functions generated from large space shell model calculations. The inelastic scattering data show a remarkable sensitivity to the halo structure of 6He.
Observables in elastic proton-deuteron scattering are sensitive probes of the nucleon-nucleon interaction and three-nucleon force effects. The present experimental data base for this reaction is large, but contains a large discrepancy between data se ts for the differential cross section taken at 135 MeV/nucleon by two experimental research groups. This paper reviews the background of this problem and presents new data taken at KVI. Differential cross sections and analyzing powers for the $^{2}{rm H}(vec p,d){p}$ and ${rm H}(vec d,d){p}$ reactions at 135 MeV/nucleon and 65 MeV/nucleon, respectively, have been measured. The data differ significantly from previous measurements and consistently follow the energy dependence as expected from an interpolation of published data taken over a large range at intermediate energies.
166 - A. Watanabe , S. Nakai , Y. Wada 2021
We present a precise measurement of the cross section, proton and $rm ^3He$ analyzing powers, and spin correlation coefficient $C_{y,y}$ for $p$-$rm ^3He$ elastic scattering near 65 MeV, and a comparison with rigorous four-nucleon scattering calculat ions based on realistic nuclear potentials and a model with $Delta$-isobar excitation. Clear discrepancies are seen in some of the measured observables in the regime around the cross section minimum. Theoretical predictions using scaling relations between the calculated cross section and the $rm ^3 He$ binding energy are not successful in reproducing the data. Large sensitivity to the $NN$ potentials and rather small $Delta$-isobar effects in the calculated cross section are noticed as different features from those in the deuteron-proton elastic scattering. The results obtained above indicate that $p$-$rm ^3He$ scattering at intermediate energies is an excellent tool to explore nuclear interactions not accessible by three-nucleon scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا