ترغب بنشر مسار تعليمي؟ اضغط هنا

Elastic proton-deuteron scattering at intermediate energies

249   0   0.0 ( 0 )
 نشر من قبل Johannes Messchendorp J.G.
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Observables in elastic proton-deuteron scattering are sensitive probes of the nucleon-nucleon interaction and three-nucleon force effects. The present experimental data base for this reaction is large, but contains a large discrepancy between data sets for the differential cross section taken at 135 MeV/nucleon by two experimental research groups. This paper reviews the background of this problem and presents new data taken at KVI. Differential cross sections and analyzing powers for the $^{2}{rm H}(vec p,d){p}$ and ${rm H}(vec d,d){p}$ reactions at 135 MeV/nucleon and 65 MeV/nucleon, respectively, have been measured. The data differ significantly from previous measurements and consistently follow the energy dependence as expected from an interpolation of published data taken over a large range at intermediate energies.



قيم البحث

اقرأ أيضاً

We present measurements of differential cross sections and the analyzing powers A_y, iT11, T20, T21, and T22 at E_c.m.=431.3 keV. In addition, an excitation function of iT11(theta_c.m.=87.8 degrees) for 431.3 <= E_c.m. <= 2000 keV is presented. These data are compared to calculations employing realistic nucleon-nucleon interactions, both with and without three-nucleon forces. Excellent agreement with the tensor analyzing powers and cross section is found, while the Ay and iT11 data are found to be underpredicted by the calculations.
166 - A. Watanabe , S. Nakai , Y. Wada 2021
We present a precise measurement of the cross section, proton and $rm ^3He$ analyzing powers, and spin correlation coefficient $C_{y,y}$ for $p$-$rm ^3He$ elastic scattering near 65 MeV, and a comparison with rigorous four-nucleon scattering calculat ions based on realistic nuclear potentials and a model with $Delta$-isobar excitation. Clear discrepancies are seen in some of the measured observables in the regime around the cross section minimum. Theoretical predictions using scaling relations between the calculated cross section and the $rm ^3 He$ binding energy are not successful in reproducing the data. Large sensitivity to the $NN$ potentials and rather small $Delta$-isobar effects in the calculated cross section are noticed as different features from those in the deuteron-proton elastic scattering. The results obtained above indicate that $p$-$rm ^3He$ scattering at intermediate energies is an excellent tool to explore nuclear interactions not accessible by three-nucleon scattering.
We present new accurate measurements of the differential cross section $sigma(theta)$ and the proton analyzing power $A_{y}$ for proton-$^{3}$He elastic scattering at various energies. A supersonic gas jet target has been employed to obtain these low energy cross section measurements. The $sigma(theta)$ distributions have been measured at $E_{p}$ = 0.99, 1.59, 2.24, 3.11, and 4.02 MeV. Full angular distributions of $A_{y}$ have been measured at $E_{p}$ = 1.60, 2.25, 3.13, and 4.05 MeV. This set of high-precision data is compared to four-body variational calculations employing realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions. For the unpolarized cross section the agreement between the theoretical calculation and data is good when a $3N$ potential is used. The comparison between the calculated and measured proton analyzing powers reveals discrepancies of approximately 50% at the maximum of each distribution. This is analogous to the existing ``$A_{y}$ Puzzle known for the past 20 years in nucleon-deuteron elastic scattering.
The vector and tensor analysing powers in deuteron-proton elastic scattering have been measured in the forward hemisphere at deuteron kinetic energies of 1.2 GeV and 2.27 GeV using the ANKE spectrometer at the COSY storage ring. The results are compa red with other experimental data and with predictions made within the framework of Glauber multiple scattering theory.
Vector and tensor analysing powers of the d(pol)p->(pp)n (charge-exchange) and d(pol)p->(pn)p (non-charge-exchange) breakup reactions have been measured with the ANKE spectrometer at the COSY ring at a deuteron beam energy of 1170 MeV for small momen tum transfers to the low excitation energy (pp) or (pn) systems. A quantitative understanding of the values of A_xx and A_yy for the charge-exchange reaction is provided by impulse approximation calculations. The data suggest that spin-flip isospin-flip transitions, which dominate the charge-exchange breakup of the deuteron, are also important in the non-charge-exchange reaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا