ﻻ يوجد ملخص باللغة العربية
We argue that Delta L=2 neutrino spin flavor precession, induced by the primordial magnetic fields, could have a significant impact on the leptogenesis process that accounts for the baryon asymmetry of the universe. Although the extra galactic magnetic fields is extremely weak at present time (about 10^{-9} Gauss), the primordial magnetic filed at the electroweak scale could be quite strong (of order 10^{17} Gauss). Therefore, at this scale, the effects of the spin flavor precession are not negligible. We show that the lepton asymmetry may be reduced by 50% due to the spin flavor precession. In addition, the leptogenesis will have different feature from the standard scenario of leptogenesis, where the lepton asymmetry continues to oscillate even after the electroweak phase transition.
This work deals with the possible solution of the solar neutrino problem in the framework of the resonant neutrino spin-flavor precession scenario. The event rate results from the solar neutrino experiments as well as the recoil electron energy spect
The see-saw mechanism to generate small neutrino masses is reviewed. After summarizing our current knowledge about the low energy neutrino mass matrix we consider reconstructing the see-saw mechanism. Low energy neutrino physics is not sufficient to
Neutrino Physics is a mature branch of science with all the three neutrino mixing angles and two mass squared differences determined with high precision. Inspite of several experimental verifications of neutrino oscillations and precise measurements
We have studied the scotogenic model proposed by Ernest Ma, which is an extension of the Standard Model by three singlet right-handed neutrinos and a scalar doublet. This model proposes that the light neutrinos acquire a non-zero mass at 1-loop level