ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects Of leptonic non-unitarity on lepton flavor violation, neutrino oscillation, leptogenesis and lightest neutrino mass

254   0   0.0 ( 0 )
 نشر من قبل Gayatri Ghosh
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutrino Physics is a mature branch of science with all the three neutrino mixing angles and two mass squared differences determined with high precision. Inspite of several experimental verifications of neutrino oscillations and precise measurements of two mass squared differences and the three mixing angles, the unitarity of the leptonic mixing matrix is not yet established, leaving room for the presence of small non-unitarity effects. Deriving the bounds on these non-unitarity parameters from existing experimental constraints, on cLFV decays such as, $ murightarrow egamma $, $ murightarrow taugamma $, $ taurightarrow egamma $, we study their effects on the generation of baryon asymmetry through leptogenesis and neutrino oscillation probabilities. We consider a model where see-saw is extended by an additional singlet $ S $ which is very light, but can give rise to non-unitarity effects without affecting the form on see-saw formula. We do a parameter scan of a minimal see-saw model in a type I see-saw framework satisfying the Planck data on baryon to photon ratio of the Universe, which lies in the interval, $5.8times 10^ {-10} < Y _{B} < 6.6 times 10^ {-10} (BBN)$. We predict values of lightest neutrino mass, and Dirac and Majorana CP-violating phase $ delta_{CP} $, $ alpha $ and $ beta $, for normal hierarchy and inverted hierarchy for one flavor leptogenesis. It is worth mentioning that all these four quantities are unknown yet, and future experiments will be measuring them.



قيم البحث

اقرأ أيضاً

Effects of the lightest neutrino mass in flavoured leptogenesis when the CP-violation necessary for the generation of the baryon asymmetry of the Universe is due exclusively to the Dirac and/or Majorana phases in the neutrino mixing matrix $U$ are di scussed. The type I see-saw scenario with three heavy right-handed Majorana neutrinos having hierarchical spectrum is considered. The orthogonal parametrisation of the matrix of neutrino Yukawa couplings, which involves a complex orthogonal matrix $R$, is employed. Results for light neutrino mass spectrum with normal and inverted ordering (hierarchy) are reviewed.
The effects of the lightest neutrino mass in ``flavoured leptogenesis are investigated in the case when the CP-violation necessary for the generation of the baryon asymmetry of the Universe is due exclusively to the Dirac and/or Majorana phases in th e neutrino mixing matrix U. The type I see-saw scenario with three heavy right-handed Majorana neutrinos having hierarchical spectrum is considered. The ``orthogonal parametrisation of the matrix of neutrino Yukawa couplings, which involves a complex orthogonal matrix R, is employed. Results for light neutrino mass spectrum with normal and inverted ordering (hierarchy) are obtained. It is shown, in particular, that if the matrix R is real and CP-conserving and the lightest neutrino mass m_3 in the case of inverted hierarchical spectrum lies the interval 5 times 10^{-4} eV < m_3 < 7 times 10^{-3} eV, the predicted baryon asymmetry can be larger by a factor of sim 100 than the asymmetry corresponding to negligible m_3 cong 0. As consequence, we can have successful thermal leptogenesis for 5 times 10^{-6} eV < m_3 < 5 times 10^{-2} eV even if R is real and the only source of CP-violation in leptogenesis is the Majorana and/or Dirac phase(s) in U.
The unitarity of the lepton mixing matrix is a critical assumption underlying the standard neutrino-mixing paradigm. However, many models seeking to explain the as-yet-unknown origin of neutrino masses predict deviations from unitarity in the mixing of the active neutrino states. Motivated by the prospect that future experiments may provide a precise measurement of the lepton mixing matrix, we revisit current constraints on unitarity violation from oscillation measurements and project how next-generation experiments will improve our current knowledge. With the next-generation data, the normalizations of all rows and columns of the lepton mixing matrix will be constrained to $lesssim$10% precision, with the $e$-row best measured at $lesssim$1% and the $tau$-row worst measured at ${sim}10%$ precision. The measurements of the mixing matrix elements themselves will be improved on average by a factor of $3$. We highlight the complementarity of DUNE, T2HK, JUNO, and IceCube Upgrade for these improvements, as well as the importance of $ u_tau$ appearance measurements and sterile neutrino searches for tests of leptonic unitarity.
200 - Werner Rodejohann 2008
The see-saw mechanism to generate small neutrino masses is reviewed. After summarizing our current knowledge about the low energy neutrino mass matrix we consider reconstructing the see-saw mechanism. Low energy neutrino physics is not sufficient to reconstruct see-saw, a feature which we refer to as ``see-saw degeneracy. Indirect tests of see-saw are leptogenesis and lepton flavor violation in supersymmetric scenarios, which together with neutrino mass and mixing define the framework of see-saw phenomenology. Several examples are given, both phenomenological and GUT-related. Variants of the see-saw mechanism like the type II or triplet see-saw are also discussed. In particular, we compare many general aspects regarding the dependence of LFV on low energy neutrino parameters in the extreme cases of a dominating conventional see-saw term or a dominating triplet term. For instance, the absence of mu -> e gamma or tau -> e gamma in the pure triplet case means that CP is conserved in neutrino oscillations. Scanning models, we also find that among the decays mu -> e gamma, tau -> e gamma and tau -> mu gamma the latter one has the largest branching ratio in (i) SO(10) type I see-saw models and in (ii) scenarios in which the triplet term dominates in the neutrino mass matrix.
If leptonic unitarity is violated by new physics at an energy scale much lower than the electroweak scale, which we call low-scale unitarity violation, it has different characteristic features from those expected in unitarity violation at high-energy scales. They include maintaining flavor universality and absence of zero-distance flavor transition. We present a framework for testing such unitarity violation at low energies by neutrino oscillation experiments. Starting from the unitary 3 active plus $N$ (arbitrary integer) sterile neutrino model we show that by restricting the active-sterile and sterile-sterile neutrino mass squared differences to $gtrsim$ 0.1 eV$^2$ the oscillation probability in the $(3+N)$ model becomes insensitive to details of the sterile sector, providing a nearly model-independent framework for testing low-scale unitarity violation. Yet, the presence of the sterile sector leaves trace as a constant probability leaking term, which distinguishes low-scale unitarity violation from the high-scale one. The non-unitary mixing matrix in the active neutrino subspace is common for the both cases. We analyze how severely the unitarity violation can be constrained in $ u_{e}$-row by taking a JUNO-like setting to simulate medium baseline reactor experiments. Possible modification of the features of the $(3+N)$ model due to matter effect is discussed to first order in the matter potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا