ﻻ يوجد ملخص باللغة العربية
We show that a compact Kaehler manifold X is a complex torus if both the continuous part and discrete part of some automorphism group G of X are infinite groups, unless X is bimeromorphic to a non-trivial G-equivariant fibration. Some applications to dynamics are given.
This paper is a continuation of our article (European J. Math., https://doi.org/10.1007/s40879-020-00419-8). The notion of a poor complex compact manifold was introduced there and the group $Aut(X)$ for a $P^1$-bundle over such a manifold was proven
In this paper we prove that if two normal affine surfaces $S$ and $S$ have isomorphic automophism groups, then every connected algebraic group acting regularly and faithfully on $S$ acts also regularly and faithfully on $S$. Moreover, if $S$ is non-t
We prove that an analogue of Jordans theorem on finite subgroups of general linear groups does not hold for the group of bimeromorphic automorphisms of a product of the complex projective line and a complex torus of positive algebraic dimension.
We prove several theorems relating amenability of groups in various categories (discrete, definable, topological, automorphism group) to model-theoretic invariants (quotients by connected components, Lascar Galois group, G-compactness, ...). For exam
Let $R$ be a commutative ring with identity. We define a graph $Gamma_{aut}(R)$ on $ R$, with vertices elements of $R$, such that any two distinct vertices $x, y$ are adjacent if and only if there exists $sigma in aut$ such that $sigma(x)=y$. The ide