ﻻ يوجد ملخص باللغة العربية
We characterize the distributions of size and duration of avalanches propagating in complex networks. By an avalanche we mean the sequence of events initiated by the externally stimulated `excitation of a network node, which may, with some probability, then stimulate subsequent firings of the nodes to which it is connected, resulting in a cascade of firings. This type of process is relevant to a wide variety of situations, including neuroscience, cascading failures on electrical power grids, and epidemology. We find that the statistics of avalanches can be characterized in terms of the largest eigenvalue and corresponding eigenvector of an appropriate adjacency matrix which encodes the structure of the network. By using mean-field analyses, previous studies of avalanches in networks have not considered the effect of network structure on the distribution of size and duration of avalanches. Our results apply to individual networks (rather than network ensembles) and provide expressions for the distributions of size and duration of avalanches starting at particular nodes in the network. These findings might find application in the analysis of branching processes in networks, such as cascading power grid failures and critical brain dynamics. In particular, our results show that some experimental signatures of critical brain dynamics (i.e., power-law distributions of size and duration of neuronal avalanches), are robust to complex underlying network topologies.
We study the statistics of avalanches, as a response to an applied force, undergone by a particle hopping on a one dimensional lattice where the pinning forces at each site are independent and identically distributed (I.I.D), each drawn from a contin
We study spectra of directed networks with inhibitory and excitatory couplings. We investigate in particular eigenvector localization properties of various model networks for different value of correlation among their entries. Spectra of random netwo
We systematically study and compare damage spreading for random Boolean and threshold networks under small external perturbations (damage), a problem which is relevant to many biological networks. We identify a new characteristic connectivity $K_s$,
In this work I will discuss some numerical results on the stability of the many-body localized phase to thermal inclusions. The work simplifies a recent proposal by Morningstar et al. [arXiv:2107.05642] and studies small disordered spin chains which
We provide a simple proof that graphs in a general class of self-similar networks have zero percolation threshold. The considered self-similar networks include random scale-free graphs with given expected node degrees and zero clustering, scale-free