ﻻ يوجد ملخص باللغة العربية
We present magnetic stray field measurements performed on a single micro-crystal of the half metallic ferromagnet CrO$_2$, covered by a naturally grown 2,-,5,nm surface layer of antiferromagnetic (AFM) Cr$_2$O$_3$. The temperature variation of the stray field of the micro-crystal measured by micro-Hall magnetometry shows an anomalous increase below $sim$,60,K. We find clear evidence that this behavior is due to the influence of the AFM surface layer, which could not be isolated in the corresponding bulk magnetization data measured using SQUID magnetometry. The distribution of pinning potentials, analyzed from Barkhausen jumps, exhibits a similar temperature dependence. Overall, the results indicate that the surface layer plays a role in defining the potential landscape seen by the domain configuration in the ferromagnetic grain.
We show that hole states in recently discovered single-layer InSe are strongly renormalized by the coupling with acoustic phonons. The coupling is enhanced significantly at moderate hole doping ($sim$10$^{13}$ cm$^{-2}$) due to hexagonal warping of t
We study Bi2Se3 by polarization-dependent angle-resolved photoemission spectroscopy (ARPES) and density-functional theory slab calculations. We find that the surface state Dirac fermions are characterized by a layer-dependent entangled spin-orbital t
We investigate the spin-current transport through antiferromagnetic insulator (AFMI) by means of the spin-Hall magnetoressitance (SMR) over a wide temperature range in Pt/NiO/Y$_3$Fe$_5$O$_{12}$ (Pt/NiO/YIG) heterostructures. By inserting the AFMI Ni
The contribution of bulk and surface to the electrical resistance along crystallographic textit{b}- and textit{c}-axes as a function of crystal thickness gives evidence for a temperature independent surface states in an antiferromagnetic narrow-gap s
The fermionic self-energy on the surface of a topological insulator proximity coupled to ferro- and antiferromagnetic insulators is studied. An enhanced electron-magnon coupling is achieved by allowing the electrons on the surface of the topological