ترغب بنشر مسار تعليمي؟ اضغط هنا

Detailed abundances of Red Giants in the Globular Cluster NGC~1851: C+N+O and the Origin of Multiple Populations

135   0   0.0 ( 0 )
 نشر من قبل Sandro Villanova
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present chemical abundance analysis of a sample of 15 red giant branch (RGB) stars of the Globular Cluster NGC~1851 distributed along the two RGBs of the (v, v-y) CMD. We determined abundances for C+N+O, Na, $alpha$, iron-peak, and s-elements. We found that the two RGB populations significantly differ in their light (N,O,Na) and s-element content. On the other hand, they do not show any significant difference in their $alpha$ and iron-peak element content. More importantly, the two RGB populations do not show any significant difference in their total C+N+O content. Our results do not support previous hypotheses suggesting that the origin of the two RGBs and the two subgiant branches of the cluster is related to a different content of either $alpha$ (including Ca) or iron-peak elements, or C+N+O abundance, due to a second generation polluted by SNeII.



قيم البحث

اقرأ أيضاً

143 - P. Ventura , V. Caloi , F. DAntona 2009
Among the newly discovered features of multiple stellar populations in Globular Clusters, the cluster NGC 1851 harbours a double subgiant branch, that can be explained in terms of two stellar generations, only slightly differing in age, the younger o ne having an increased total C+N+O abundance. Thanks to this difference in the chemistry, a fit can be made to the subgiant branches, roughly consistent with the C+N+O abundance variations already discovered two decades ago, and confirmed by recent spectroscopic data. We compute theoretical isochrones for the main sequence turnoff, by adopting four chemical mixtures for the opacities and nuclear reaction rates. The standard mixture has Z=10$^{-3}$ and [$alpha$/Fe]=0.4, the others have C+N+O respectively equal to 2, 3 and 5 times the standard mixture, according to the element abundance distribution described in the text. We compare tracks and isochrones, and show how the results depend on the total CNO abundance. We notice that different initial CNO abundances between two clusters, otherwise similar in metallicity and age, may lead to differences in the turnoff morphology that can be easily attributed to an age difference. We simulate the main sequence and subgiant branch data for NGC 1851 and show that an increase of C+N+O by a factor $sim$3 best reproduces the shift between the subgiant branches. We compare the main sequence width in the color m$_{F336W}$-m$_{F814W}$ with models, and find that the maximum helium abundance compatible with the data is Y$simeq$0.29. We consider the result in the framework of the formation of the second stellar generation in globular clusters, for the bulk of which we estimate a helium abundance of Y$simlt 0.26$.
154 - Eugenio Carretta 2012
We study the distribution of aluminum abundances among red giants in the peculiar globular cluster NGC 1851. Aluminum abundances were derived from the strong doublet Al I 8772-8773 A measured on intermediate resolution FLAMES spectra of 50 cluster st ars acquired under the Gaia-ESO public survey. We coupled these abundances with previously derived abundance of O, Na, Mg to fully characterize the interplay of the NeNa and MgAl cycles of H-burning at high temperature in the early stellar generation in NGC 1851. The stars in our sample show well defined correlations between Al,Na and Si; Al is anticorrelated with O and Mg. The average value of the [Al/Fe] ratio steadily increases going from the first generation stars to the second generation populations with intermediate and extremely modified composition. We confirm on a larger database the results recently obtained by us (Carretta et al. 2011a): the pattern of abundances of proton-capture elements implies a moderate production of Al in NGC 1851. We find evidence of a statistically significant positive correlation between Al and Ba abundances in the more metal-rich component of red giants in NGC 1851.
475 - Eugenio Carretta 2014
We present the abundances of N in a sample of 62 stars on the red giant branch (RGB) in the peculiar globular cluster NGC 1851. The values of [N/Fe] ratio were obtained by comparing the flux measured in the observed spectra with that from synthetic s pectra for up to about 15 features of CN. This is the first time that N abundances are obtained for such a large sample of RGB stars from medium-resolution spectroscopy in this cluster. With these abundances we provide a chemical tagging of the split red giant branch found from several studies in NGC 1851. The secondary, reddest sequence on the RGB is populated almost exclusively by N-rich stars, confirming our previous suggestion based on Stromgren magnitudes and colours. These giants are also, on average, enriched in s-process elements such as Ba, and are likely the results of pollution from low mass stars that experienced episodes of third dredge-up in the asymptotic giant branch phase.
133 - David Yong 2009
Abundances of C, N, and O are determined in four bright red giants that span the known abundance range for light (Na and Al) and s-process (Zr and La) elements in the globular cluster NGC 1851. The abundance sum C+N+O exhibits a range of 0.6 dex, a f actor of 4, in contrast to other clusters in which no significant C+N+O spread is found. Such an abundance range offers support for the Cassisi et al. (2008) scenario in which the double subgiant branch populations are coeval but with different mixtures of C+N+O abundances. Further, the Na, Al, Zr, and La abundances are correlated with C+N+O, and therefore, NGC 1851 is the first cluster to provide strong support for the scenario in which AGB stars are responsible for the globular cluster light element abundance variations.
156 - Eugenio Carretta 2012
We present aluminium, magnesium, and silicon abundances in the metal-poor globular cluster NGC 6752 for a sample of more than 130 red giants with homogeneous oxygen and sodium abundances. We find that [Al/Fe] shows a spread of about 1.4 dex among gia nts in NGC 6752 and is anticorrelated with [Mg/Fe] and [O/Fe] and correlated with [Na/Fe] and [Si/Fe]. These relations are not continuous in nature, but the distribution of stars is clearly clustered around three distinct Al values, low, intermediate, and high. These three groups nicely correspond to the three distinct sequences previously detected using Stromgren photometry along the red giant branch. These two independent findings strongly indicate the existence of three distinct stellar populations in NGC 6752. Comparing the abundances of O and Mg, we find that the population with intermediate chemical abundances cannot originate from material with the same composition of the most O- and Mg-poor population, diluted by material with that of the most O- and Mg-rich one. This calls for different polluters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا