ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring central-spin interaction with a spin bath by pulsed ENDOR: Towards suppression of spin diffusion decoherence

155   0   0.0 ( 0 )
 نشر من قبل Setrak Balian
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present pulsed electron-nuclear double resonance (ENDOR) experiments which enable us to characterize the coupling between bismuth donor spin qubits in Si and the surrounding spin bath of 29Si impurities which provides the dominant decoherence mechanism (nuclear spin diffusion) at low temperatures (< 16 K). Decoupling from the spin bath is predicted and cluster correlation expansion simulations show near-complete suppression of spin diffusion, at optimal working points. The suppression takes the form of sharply peaked divergences of the spin diffusion coherence time, in contrast with previously identified broader regions of insensitivity to classical fluctuations. ENDOR data suggest that anisotropic contributions are comparatively weak, so the form of the divergences is largely independent of crystal orientation.



قيم البحث

اقرأ أيضاً

128 - S. J. Balian 2015
A major problem facing the realisation of scalable solid-state quantum computing is that of overcoming decoherence - the process whereby phase information encoded in a qubit is lost as the qubit interacts with its environment. Due to the vast number of environmental degrees of freedom, it is challenging to accurately calculate decoherence times $T_2$, especially when the qubit and environment are highly correlated. Hybrid or mixed electron-nuclear spin qubits, such as donors in silicon, possess optimal working points (OWPs) which are sweet-spots for reduced decoherence in magnetic fields. Analysis of sharp variations of $T_2$ near OWPs was previously based on insensitivity to classical noise, even though hybrid qubits are situated in highly correlated quantum environments, such as the nuclear spin bath of $^{29}$Si impurities. This presented limited understanding of the decoherence mechanism and gave unreliable predictions for $T_2$. I present quantum many-body calculations of the qubit-bath dynamics, which (i) yield $T_2$ for hybrid qubits in excellent agreement with experiments in multiple regimes, (ii) elucidate the many-body nature of the nuclear spin bath and (iii) expose significant differences between quantum-bath and classical-field decoherence. To achieve these, the cluster correlation expansion was adapted to include electron-nuclear state mixing. In addition, an analysis supported by experiment was carried out to characterise the nuclear spin bath for a bismuth donor as the hybrid qubit, a simple analytical formula for $T_2$ was derived with predictions in agreement with experiment, and the established method of dynamical decoupling was combined with operating near OWPs in order to maximise $T_2$. Finally, the decoherence of a $^{29}$Si spin in proximity to the hybrid qubit was studied, in order to establish the feasibility for its use as a quantum register.
178 - Y. Kubo , I. Diniz , C. Grezes 2012
A new method for detecting the magnetic resonance of electronic spins at low temperature is demonstrated. It consists in measuring the signal emitted by the spins with a superconducting qubit that acts as a single-microwave-photon detector, resulting in an enhanced sensitivity. We implement this new type of electron-spin resonance spectroscopy using a hybrid quantum circuit in which a transmon qubit is coupled to a spin ensemble consisting of NV centers in diamond. With this setup we measure the NV center absorption spectrum at 30mK at an excitation level of thicksim15,mu_{B} out of an ensemble of 10^{11} spins.
The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a mechanis m for high-fidelity spin-to-photon conversion, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here we demonstrate a high-fidelity spin-to-photon interface in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin-mixing, and that the optical linewidths in our current sample are already similar to those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have millisecond Hahn-echo spin coherence time, which is among the longest measured in a naturally isotopic solid. The presence of defects with these properties in a commercial semiconductor that can be heteroepitaxially grown as a thin film on shows promise for future quantum networks based on SiC defects.
The implementation of quantum networks involving quantum memories and photonic channels without the need for cryogenics would be a major technological breakthrough. Nitrogen-vacancy centers have excellent spin properties even at room temperature, but phonon-induced broadening makes it challenging to interface these spins with photons at non-cryogenic temperatures. Inspired by recent progress in achieving ultra-high mechanical quality factors, we propose that this challenge can be overcome by spin-opto-mechanical transduction. We quantify the coherence of the interface by calculating the indistinguishability of the emitted photons and describe promising paths towards experimental implementation.
An exact reduced dynamical map along with its operator sum representation is derived for a central spin interacting with a thermal spin environment. The dynamics of the central spin shows high sustainability of quantum traits such as coherence and en tanglement in the low-temperature regime. However, for sufficiently high temperature and when the number of bath particles approaches the thermodynamic limit, this feature vanishes and the dynamics closely mimics Markovian evolution. The properties of the long-time-averaged state and the trapped information of the initial state for the central qubit are also investigated in detail, confirming that the nonergodicity of the dynamics can be attributed to the finite temperature and finite size of the bath. It is shown that if a certain stringent resonance condition is satisfied, the long-time-averaged state retains quantum coherence, which can have far reaching technological implications in engineering quantum devices. An exact time-local master equation of the canonical form is derived. With the help of this master equation, the nonequilibrium properties of the central spin system are studied by investigating the detailed balance condition and irreversible entropy production rate. The result reveals that the central qubit thermalizes only in the limit of very high temperature and large number of bath spins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا