ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a Room-Temperature Spin-Photon Interface based on Nitrogen-Vacancy centers and Optomechanics

254   0   0.0 ( 0 )
 نشر من قبل Roohollah Ghobadi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The implementation of quantum networks involving quantum memories and photonic channels without the need for cryogenics would be a major technological breakthrough. Nitrogen-vacancy centers have excellent spin properties even at room temperature, but phonon-induced broadening makes it challenging to interface these spins with photons at non-cryogenic temperatures. Inspired by recent progress in achieving ultra-high mechanical quality factors, we propose that this challenge can be overcome by spin-opto-mechanical transduction. We quantify the coherence of the interface by calculating the indistinguishability of the emitted photons and describe promising paths towards experimental implementation.



قيم البحث

اقرأ أيضاً

218 - A. Jarmola , A. Berzins , J. Smits 2015
We present systematic measurements of longitudinal relaxation rates ($1/T_1$) of spin polarization in the ground state of the nitrogen-vacancy (NV$^-$) color center in synthetic diamond as a function of NV$^-$ concentration and magnetic field $B$. NV $^-$ centers were created by irradiating a Type 1b single-crystal diamond along the [100] axis with 200 keV electrons from a transmission electron microscope with varying doses to achieve spots of different NV$^-$ center concentrations. Values of ($1/T_1$) were measured for each spot as a function of $B$.
We characterize single nitrogen-vacancy (NV) centers created by 10-keV N+ ion implantation into diamond via thin SiO$_2$ layers working as screening masks. Despite the relatively high acceleration energy compared with standard ones (< 5 keV) used to create near-surface NV centers, the screening masks modify the distribution of N$^+$ ions to be peaked at the diamond surface [Ito et al., Appl. Phys. Lett. 110, 213105 (2017)]. We examine the relation between coherence times of the NV electronic spins and their depths, demonstrating that a large portion of NV centers are located within 10 nm from the surface, consistent with Monte Carlo simulations. The effect of the surface on the NV spin coherence time is evaluated through noise spectroscopy, surface topography, and X-ray photoelectron spectroscopy.
Efficient polarization of organic molecules is of extraordinary relevance when performing nuclear magnetic resonance (NMR) and imaging. Commercially available routes to dynamical nuclear polarization (DNP) work at extremely low-temperatures, thus bri nging the molecules out of their ambient thermal conditions and relying on the solidification of organic samples. In this work we investigate polarization transfer from optically-pumped nitrogen vacancy centers in diamond to external molecules at room temperature. This polarization transfer is described by both an extensive analytical analysis and numerical simulations based on spin bath bosonization and is supported by experimental data in excellent agreement. These results set the route to hyperpolarization of diffusive molecules in different scenarios and consequently, due to increased signal, to high-resolution NMR.
Silicon vacancies in silicon carbide have been proposed as an alternative to nitrogen vacancy centers in diamonds for spintronics and quantum technologies. An important precondition for these applications is the initialization of the qubits into a sp ecific quantum state. In this work, we study the optical alignment of the spin 3/2 negatively charged silicon vacancy in 6H-SiC. Using a time-resolved optically detected magnetic resonance technique, we coherently control the silicon vacancy spin ensemble and measure Rabi frequencies and spin-lattice relaxation time of all three transitions. Then to study the optical initialization process of the silicon vacancy spin ensemble, the vacancy spin ensemble is prepared in different ground states and optically excited. We describe a simple rate equation model that can explain the observed behaviour and determine the relevant rate constants.
Powered by the mutual developments in instrumentation, materials andtheoretical descriptions, sensing and imaging capabilities of quantum emitters insolids have significantly increased in the past two decades. Quantum emitters insolids, whose propert ies resemble those of atoms and ions, provide alternative waysto probing natural and artificial nanoscopic systems with minimum disturbance andultimate spatial resolution. Among those emerging quantum emitters, the nitrogen-vacancy (NV) color center in diamond is an outstanding example due to its intrinsicproperties at room temperature (highly-luminescent, photo-stable, biocompatible,highly-coherent spin states). This review article summarizes recent advances andachievements in using NV centers within nano- and single crystal diamonds in sensingand imaging. We also highlight prevalent challenges and material aspects for differenttypes of diamond and outline the main parameters to consider when using color centersas sensors. As a novel sensing resource, we highlight the properties of NV centersas light emitting electrical dipoles and their coupling to other nanoscale dipoles e.g.graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا