ﻻ يوجد ملخص باللغة العربية
The optimisation of two-dimensional (2D) lattice ion trap geometries for trapped ion quantum simulation is investigated. The geometry is optimised for the highest ratio of ion-ion interaction rate to decoherence rate. To calculate the electric field of such array geometries a numerical simulation based on a Biot-Savart like law method is used. In this article we will focus on square, hexagonal and centre rectangular lattices for optimisation. A method for maximising the homogeneity of trapping site properties over an array is presented for arrays of a range of sizes. We show how both the polygon radii and separations scale to optimise the ratio between the interaction and decoherence rate. The optimal polygon radius and separation for a 2D lattice is found to be a function of the ratio between rf voltage and drive frequency applied to the array. We then provide a case study for 171Yb+ ions to show how a two-dimensional quantum simulator array could be designed.
Quantum simulations of spin systems could enable the solution of problems which otherwise require infeasible classical resources. Such a simulation may be implemented using a well-controlled system of effective spins, such as a two-dimensional lattic
Two-dimensional crystals of trapped ions are a promising system with which to implement quantum simulations of challenging problems such as spin frustration. Here, we present a design for a surface-electrode elliptical ion trap which produces a 2-D i
Microfabricated ion traps are a major advancement towards scalable quantum computing with trapped ions. The development of more versatile ion-trap designs, in which tailored arrays of ions are positioned in two dimensions above a microfabricated surf
Quantum mechanics dominates various effects in modern research from miniaturizing electronics, up to potentially ruling solid-state physics, quantum chemistry and biology. To study these effects experimental quantum systems may provide the only effec
We demonstrate a two-dimensional 11-zone ion trap array, where individual laser-cooled atomic ions are stored, separated, shuttled, and swapped. The trap geometry consists of two linear rf ion trap sections that are joined at a 90 degree angle to for