ﻻ يوجد ملخص باللغة العربية
Knotty structures of Herbig-Haro jets are common phenomena, and knowing the origin of these structures is essential for understanding the processes of jet formation. Basically, there are two theoretical approaches: different types of instabilities in stationary flow, and velocity variations in the flow. We investigate the structures with different radial velocities in the knots of the HL Tau jet as well as its unusual behaviour starting from 20 arcsec from the source. Collation of radial velocity data with proper motion measurements of emission structures in the jet of HL Tau makes it possible to understand the origin of these structures and decide on the mechanism for the formation of the knotty structures in Herbig-Haro flows. We present observations obtained with a 6 m telescope (Russia) using the SCORPIO camera with scanning Fabry-Perot interferometer. Two epochs of the observations of the HL/XZ Tau region in Halpha emission (2001 and 2007) allowed us to measure proper motions for high and low radial velocity structures. The structures with low and high radial velocities in the HL Tau jet show the same proper motion. The point where the HL Tau jet bents to the north (it coincides with the trailing edge of so-called knot A) is stationary, i.e. does not have any perceptible proper motion and is visible in Halpha emission only. We conclude that the high- and low- velocity structures in the HL Tau jet represent bow-shocks and Mach disks in the internal working surfaces of episodic outflows. The bend of the jet and the brightness increase starting some distance from the source coincides with the observed stationary deflecting shock. The increase of relative surface brightness of bow-shocks could be the result of the abrupt change of the physical conditions of the ambient medium as well as the interaction of a highly collimated flow and the side wind from XZ Tau.
We present new results on the kinematics of the jet HH 110. New proper motion measurements have been calculated from [SII] CCD images obtained with a time baseline of nearly fifteen years. HH 110 proper motions show a strong asymmetry with respect to
Recent ALMA images of HL Tau show gaps in the dusty disk that may be caused by planetary bodies. Given the young age of this system, if confirmed, this finding would imply very short timescales for planet formation, probably in a gravitationally unst
Recent observations of HL Tau revealed remarkably detailed structure within the systems circumstellar disc. A range of hypotheses have been proposed to explain the morphology, including, e.g., planet-disc interactions, condensation fronts, and secula
We present $^{12}$CO(2-1) line and 1300 $mu$m continuum observations made with the Submillimeter Array (SMA) of the young star DG Tau B. We find, in the continuum observations, emission arising from the circumstellar disk surrounding DG Tau B. The $^
Outflowing motions, whether a wind launched from the disk, a jet launched from the protostar, or the entrained molecular outflow, appear to be an ubiquitous feature of star formation. These outwards motions have a number of root causes, and how they