ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematics and the origin of the internal structures in HL Tau jet (HH 151)

105   0   0.0 ( 0 )
 نشر من قبل Alexei Moiseev
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Knotty structures of Herbig-Haro jets are common phenomena, and knowing the origin of these structures is essential for understanding the processes of jet formation. Basically, there are two theoretical approaches: different types of instabilities in stationary flow, and velocity variations in the flow. We investigate the structures with different radial velocities in the knots of the HL Tau jet as well as its unusual behaviour starting from 20 arcsec from the source. Collation of radial velocity data with proper motion measurements of emission structures in the jet of HL Tau makes it possible to understand the origin of these structures and decide on the mechanism for the formation of the knotty structures in Herbig-Haro flows. We present observations obtained with a 6 m telescope (Russia) using the SCORPIO camera with scanning Fabry-Perot interferometer. Two epochs of the observations of the HL/XZ Tau region in Halpha emission (2001 and 2007) allowed us to measure proper motions for high and low radial velocity structures. The structures with low and high radial velocities in the HL Tau jet show the same proper motion. The point where the HL Tau jet bents to the north (it coincides with the trailing edge of so-called knot A) is stationary, i.e. does not have any perceptible proper motion and is visible in Halpha emission only. We conclude that the high- and low- velocity structures in the HL Tau jet represent bow-shocks and Mach disks in the internal working surfaces of episodic outflows. The bend of the jet and the brightness increase starting some distance from the source coincides with the observed stationary deflecting shock. The increase of relative surface brightness of bow-shocks could be the result of the abrupt change of the physical conditions of the ambient medium as well as the interaction of a highly collimated flow and the side wind from XZ Tau.



قيم البحث

اقرأ أيضاً

79 - Rosario Lopez 2004
We present new results on the kinematics of the jet HH 110. New proper motion measurements have been calculated from [SII] CCD images obtained with a time baseline of nearly fifteen years. HH 110 proper motions show a strong asymmetry with respect to the outflow axis, with a general trend of pointing towards the west of the axis direction. Spatial velocities have been obtained by combining the proper motions and radial velocities from Fabry-Perot data. Velocities decrease by a factor ~3 over a distance of ~10$^{18}$ cm, much shorter than the distances expected for the braking caused by the jet/environment interaction. Our results show evidence of an anomalously strong interaction between the outflow and the surrounding environment, and are compatible with the scenario in which HH 110 emerges from a deflection in a jet/cloud collision.
90 - L. Testi 2015
Recent ALMA images of HL Tau show gaps in the dusty disk that may be caused by planetary bodies. Given the young age of this system, if confirmed, this finding would imply very short timescales for planet formation, probably in a gravitationally unst able disk. To test this scenario, we searched for young planets by means of direct imaging in the L-band using the Large Binocular Telescope Interferometer mid-infrared camera. At the location of two prominent dips in the dust distribution at ~70AU (~0.5) from the central star we reach a contrast level of ~7.5mag. We did not detect any point source at the location of the rings. Using evolutionary models we derive upper limits of ~10-15MJup at <=0.5-1Ma for the possible planets. With these sensitivity limits we should have been able to detect companions sufficiently massive to open full gaps in the disk. The structures detected at mm-wavelengths could be gaps in the distributions of large grains on the disk midplane, caused by planets not massive enough to fully open gaps. Future ALMA observations of the molecular gas density profile and kinematics as well as higher contrast infrared observations may be able to provide a definitive answer.
63 - Aaron C. Boley 2017
Recent observations of HL Tau revealed remarkably detailed structure within the systems circumstellar disc. A range of hypotheses have been proposed to explain the morphology, including, e.g., planet-disc interactions, condensation fronts, and secula r gravitational instabilities. While embedded planets seem to be able to explain some of the major structure in the disc through interactions with gas and dust, the substructure, such as low-contrast rings and bands, are not so easily reproduced. Here, we show that dynamical interactions between three planets (only two of which are modelled) and an initial population of large planetesimals can potentially explain both the major and minor banded features within the system. In this context, the small grains, which are coupled to the gas and reveal the disc morphology, are produced by the collisional evolution of the newly-formed planetesimals, which are ubiquitous in the system and are decoupled from the gas.
We present $^{12}$CO(2-1) line and 1300 $mu$m continuum observations made with the Submillimeter Array (SMA) of the young star DG Tau B. We find, in the continuum observations, emission arising from the circumstellar disk surrounding DG Tau B. The $^ {12}$CO(2-1) line observations, on the other hand, revealed emission associated with the disk and the asymmetric outflow related with this source. Velocity asymmetries about the flow axis are found over the entire length of the flow. The amplitude of the velocity differences is of the order of 1 -- 2 km s$^{-1}$ over distances of about 300 -- 400 AU. We interpret them as a result of outflow rotation. The sense of the outflow and disk rotation is the same. Infalling gas from a rotating molecular core cannot explain the observed velocity gradient within the flow. Magneto-centrifugal disk winds or photoevaporated disk winds can produce the observed rotational speeds if they are ejected from a keplerian disk at radii of several tens of AU. Nevertheless, these slow winds ejected from large radii are not very massive, and cannot account for the observed linear momentum and angular momentum rates of the molecular flow. Thus, the observed flow is probably entrained material from the parent cloud. DG Tau B is a good laboratory to model in detail the entrainment process and see if it can account for the observed angular momentum.
Outflowing motions, whether a wind launched from the disk, a jet launched from the protostar, or the entrained molecular outflow, appear to be an ubiquitous feature of star formation. These outwards motions have a number of root causes, and how they manifest is intricately linked to their environment as well as the process of star formation itself. Using the ALMA Science Verification data of HL Tau, we investigate the high velocity molecular gas being removed from the system as a result of the star formation process. We aim to place these motions in context with the optically detected jet, and the disk. With these high resolution ($sim 1$) ALMA observations of CO (J=1-0), we quantify the outwards motions of the molecular gas. We find evidence for a bipolar outwards flow, with an opening angle, as measured in the red-shifted lobe, starting off at 90$^circ$, and narrowing to 60$^circ$ further from the disk, likely because of magnetic collimation. Its outwards velocity, corrected for inclination angle is of order 2.4 km s$^{-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا