ﻻ يوجد ملخص باللغة العربية
Recent observations of HL Tau revealed remarkably detailed structure within the systems circumstellar disc. A range of hypotheses have been proposed to explain the morphology, including, e.g., planet-disc interactions, condensation fronts, and secular gravitational instabilities. While embedded planets seem to be able to explain some of the major structure in the disc through interactions with gas and dust, the substructure, such as low-contrast rings and bands, are not so easily reproduced. Here, we show that dynamical interactions between three planets (only two of which are modelled) and an initial population of large planetesimals can potentially explain both the major and minor banded features within the system. In this context, the small grains, which are coupled to the gas and reveal the disc morphology, are produced by the collisional evolution of the newly-formed planetesimals, which are ubiquitous in the system and are decoupled from the gas.
We report the detection of spiral substructure in both the gas velocity and temperature structure of the disk around TW~Hya, suggestive of planet-disk interactions with an unseen planet. Perturbations from Keplerian rotation tracing out a spiral patt
Dark rings with bright rims are the indirect signposts of planets embedded in protoplanetary discs. In a recent first, an azimuthally elongated AU-scale blob, possibly a planet, was resolved with ALMA in TW Hya. The blob is at the edge of a cliff-lik
We report the first detection of a gap and a ring in 336 GHz dust continuum emission from the protoplanetary disk around TW Hya, using the Atacama Large Millimeter/Submillimeter Array (ALMA). The gap and ring are located at around 25 and 41 au from t
Disc-driven planet migration is integral to the formation of planetary systems. In standard, gas-dominated protoplanetary discs, low-mass planets or planetary cores undergo rapid inwards migration and are lost to the central star. However, several re
The composition of planetary solids and gases is largely rooted in the processing of volatile elements in protoplanetary disks. To shed light on the key processes, we carry out a comparative analysis of the gas-phase carbon abundance in two systems w