ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum corrections to gravity and their implications for cosmology and astrophysics

148   0   0.0 ( 0 )
 نشر من قبل Ilya Lvovich Shapiro
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum contributions to the gravitational action are relatively easy to calculate in the higher derivative sector of the theory. However, the applications to the post-inflationary cosmology and astrophysics require the corrections to the Einstein-Hilbert action and to the cosmological constant, and those we can not derive yet in a consistent and safe way. At the same time, if we assume that these quantum terms are covariant and that they have relevant magnitude, their functional form can be defined up to a single free parameter, which can be defined on the phenomenological basis. It turns out that the quantum correction may lead, in principle, to surprisingly strong and interesting effects in astrophysics and cosmology.



قيم البحث

اقرأ أيضاً

228 - Michael Maziashvili 2008
Concerning the gravitational corrections to the running of gauge couplings two different results were reported. Some authors claim that gravitational correction at the one-loop level indicates an interesting effect of universal gravitational decreasi ng of gauge couplings, that is, gravitational correction works universally in the direction of asymptotic freedom no matter how the gauge coupling behaves without gravity, while others reject the presence of gravitational correction at the one-loop level at all. Being these calculations done in the framework of an effective field theory approach to general relativity, we wanted to draw attention to a recently discovered profound quantum-gravitational effect of space-time dimension running that inevitably affects the running of gauge couplings. The running of space-time dimension indicating gradual reduction of dimension as one gets into smaller scales acts on the coupling constants in the direction of asymptotic freedom and therefore in any case manifests the plausibility of this quantum-gravitational effect. Curiously enough, the results are also in perfect quantitative agreement with those of Robinson and Wilczek.
It is shown that a disformally coupled theory in which the gravitational sector has the Einstein-Hilbert form is equivalent to a quartic DBI Galileon Lagrangian, possessing non-linear higher derivative interactions, and hence allowing for the Vainsht ein effect. This Einstein Frame description considerably simplifies the dynamical equations and highlights the role of the different terms. The study of highly dense, non-relativistic environments within this description unravels the existence of a disformal screening mechanism, while the study of static vacuum configurations reveals the existence of a Vainshtein radius, at which the asymptotic solution breaks down. Disformal couplings to matter also allow the construction of Dark Energy models, which behave differently than conformally coupled ones and introduce new effects on the growth of Large Scale Structure over cosmological scales, on which the scalar force is not screened. We consider a simple Disformally Coupled Dark Matter model in detail, in which standard model particles follow geodesics of the gravitational metric and only Dark Matter is affected by the disformal scalar field. This particular model is not compatible with observations in the linearly perturbed regime. Nonetheless, disformally coupled theories offer enough freedom to construct realistic cosmological scenarios, which can be distinguished from the standard model through characteristic signatures.
We forecast astrophysical and cosmological parameter constraints from synergies between 21 cm intensity mapping and wide field optical galaxy surveys (both spectroscopic and photometric) over $z sim 0-3$. We focus on the following survey combinations in this work: (i) a CHIME-like and DESI-like survey in the northern hemisphere, (ii) an LSST-like and SKA I MID-like survey and (ii) a MeerKAT-like and DES-like survey in the southern hemisphere. We work with the $Lambda$CDM cosmological model having parameters ${h, Omega_m, n_s, Omega_b, sigma_8}$, parameters $v_{c,0}$ and $beta$ representing the cutoff and slope of the HI-halo mass relation in the previously developed HI halo model framework, and a parameter $Q$ that represents the scale dependence of the optical galaxy bias. Using a Fisher forecasting framework, we explore (i) the effects of the HI and galaxy astrophysical uncertainties on the cosmological parameter constraints, assuming priors from the present knowledge of the astrophysics, (ii) the improvements on astrophysical constraints over their current priors in the three configurations considered, (ii) the tightening of the constraints on the parameters relative to the corresponding HI auto-correlation surveys alone.
High precision astrometry now enables to measure the time drift of astrophysical observables in real time, hence providing new ways to probe different cosmological models. This article presents a general derivation of the redshift and direction drift s for general observers. It is then applied to the standard cosmological framework of a Friedmann-Lemaitre space- time including all effects at first order in the cosmological perturbations, as well as in the class of spatially anisotropic universe models of the Bianchi I family. It shows that for a general observer, the direction drift splits into a parallax and an aberration drifts and order of magnitude estimates of these two components are provided. The multipolar decomposition of the redshift and aberration drifts is also derived and shows that the observers peculiar velocity contributes only as a dipole whereas the anisotropic shear contributes as a quadrupole.
We show that the f(T) gravitational paradigm, in which gravity is described by an arbitrary function of the torsion scalar, can provide a mechanism for realizing bouncing cosmologies, thereby avoiding the Big Bang singularity. After constructing the simplest version of an f(T) matter bounce, we investigate the scalar and tensor modes of cosmological perturbations. Our results show that metric perturbations in the scalar sector lead to a background-dependent sound speed, which is a distinguishable feature from Einstein gravity. Additionally, we obtain a scale-invariant primordial power spectrum, which is consistent with cosmological observations, but suffers from the problem of a large tensor-to-scalar ratio. However, this can be avoided by introducing extra fields, such as a matter bounce curvaton.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا