ﻻ يوجد ملخص باللغة العربية
We review different scenarios for the motion and merging of Dirac points in two dimensional crystals. These different types of merging can be classified according to a winding number (a topological Berry phase) attached to each Dirac point. For each scenario, we calculate the Landau level spectrum and show that it can be quantitatively described by a semiclassical quantization rule for the constant energy areas. This quantization depends on how many Dirac points are enclosed by these areas. We also emphasize that different scenarios are characterized by different numbers of topologically protected zero energy Landau levels
The energy spectra for the tight-binding models on the Lieb and kagome lattices both exhibit a flat band. We present a model which continuously interpolates between these two limits. The flat band located in the middle of the three-band spectrum for
New Dirac points appear when periodic potentials are applied to graphene, and there are many interesting effects near these new Dirac points. Here we investigate the $textit{Zitterbewegung}$ effect of fermions described by a Gaussian wave packet in g
The electronic structure of a crystalline solid is largely determined by its lattice structure. Recent advances in van der Waals solids, artificial crystals with controlled stacking of two-dimensional (2D) atomic films, have enabled the creation of m
We combined periodic ripples and electrostatic potentials to form curved graphene superlattices and studied the effects of space-dependent Fermi velocity induced from curvature on their electronic properties. With equal periods and symmetric potentia
Periodically driven quantum systems host a range of non-equilibrium phenomena which are unrealizable at equilibrium. Discrete time-translational symmetry in a periodically driven many-body system can be spontaneously broken to form a discrete time cr