ﻻ يوجد ملخص باللغة العربية
The energy spectra for the tight-binding models on the Lieb and kagome lattices both exhibit a flat band. We present a model which continuously interpolates between these two limits. The flat band located in the middle of the three-band spectrum for the Lieb lattice is distorted, generating two pairs of Dirac points. While the upper pair evolves into graphene-like Dirac cones in the kagome limit, the low energy pair evolves until it merges producing the band-bottom flat band. The topological characterization of the Dirac points is achieved by projecting the Hamiltonian on the two relevant bands in order to obtain an effective Dirac Hamiltonian. The low energy pair of Dirac points is particularly interesting in this respect: when they emerge, they have opposite winding numbers, but as they merge, they have the same winding number. This apparent paradox is due to a continuous rotation of their states in pseudo-spin space, characterized by a winding vector. This simple, but quite rich model, suggests a way to a systematic characterization of two-band contact points in multiband systems.
The extraordinary electronic properties of Dirac materials, the two-dimensional partners of Weyl semimetals, arise from the linear crossings in their band structure. When the dispersion around the Dirac points is tilted, the emergence of intricate tr
The presence of flat bands is a source of localization in lattice systems. While flat bands are often unstable with respect to interactions between the particles, they can persist in certain cases. We consider a diamond ladder with transverse hopping
Bound states of two interacting particles moving on a lattice can exhibit remarkable features that are not captured by the underlying single-particle picture. Inspired by this phenomenon, we introduce a novel framework by which genuine interaction-in
We introduce a non-Abelian kagome lattice model that has both time-reversal and inversion symmetries and study the flat band physics and topological phases of this model. Due to the coexistence of both time-reversal and inversion symmetries, the ener
Twisted graphene bilayers provide a versatile platform to engineer metamaterials with novel emergent properties by exploiting the resulting geometric moir{e} superlattice. Such superlattices are known to host bulk valley currents at tiny angles ($alp