ترغب بنشر مسار تعليمي؟ اضغط هنا

Gemini/GMOS Spectroscopy of EXO 0748-676 (=UY Vol) in Outburst

164   0   0.0 ( 0 )
 نشر من قبل Robert I. Hynes
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a phase-resolved, optical, spectroscopic study of the eclipsing low-mass X-ray binary, EXO 0748-676 = UY Vol. The sensitivity of Gemini combined with our complete phase coverage makes for the most detailed blue spectroscopic study of this source obtained during its extended twenty-four year period of activity. We identify 12 optical emission lines and present trailed spectra, tomograms, and the first modulation maps of this source in outburst. The strongest line emission originates downstream of the stream-impact point, and this component is quite variable from night-to-night. Underlying this is weaker, more stable axisymmetric emission from the accretion disk. We identify weak, sharp emission components moving in phase with the donor star, from which we measure Kem = 329+/-26 km/s. Combining all the available dynamical constraints on the motion of the donor star with our observed accretion disk velocities we favor a neutron star mass close to canonical (M1~1.5Msun) and a very low mass donor (M2~0.1$Msun). We note that there is no evidence for CNO processing that is often associated with undermassive donor stars, however. A main sequence donor would require both a neutron star more massive than 2Msun and substantially sub-Keplerian disk emission.



قيم البحث

اقرأ أيضاً

X-ray observations of quiescent X-ray binaries have the potential to provide insight into the structure and the composition of neutron stars. EXO 0748-676 had been actively accreting for over 24 yr before its outburst ceased in late 2008. Subsequent X-ray monitoring revealed a gradual decay of the quiescent thermal emission that can be attributed to cooling of the accretion-heated neutron star crust. In this work, we report on new Chandra and Swift observations that extend the quiescent monitoring to ~5 yr post-outburst. We find that the neutron star temperature remained at ~117 eV between 2009 and 2011, but had decreased to ~110 eV in 2013. This suggests that the crust has not fully cooled yet, which is supported by the lower temperature of ~95 eV that was measured ~4 yr prior to the accretion phase in 1980. Comparing the data to thermal evolution simulations reveals that the apparent lack of cooling between 2009 and 2011 could possibly be a signature of convection driven by phase separation of light and heavy nuclei in the outer layers of the neutron star.
We present VLT intermediate resolution spectroscopy of UY Vol, the optical counterpart of the LMXB X-ray burster EXO 0748-676. By using Doppler tomography we detect narrow components within the broad He II 4542 A, 4686 A and 5412 A emission lines. Th e phase, velocity and narrowness of these lines are consistent with their arising from the irradiated hemisphere of the donor star, as has been observed in a number of LMXBs. Under this assumption we provide the first dynamical constraints on the stellar masses in this system. In particular, we measure K_2>K_em = 300 +/- 10 km/s. Using this value we derive 1 M_sun < M_1 < 2.4 M_sun and 0.11 < q < 0.28. We find M_1 > 1.5 M_sun for the case of a main sequence companion star. Our results are consistent with the presence of a massive neutron star as has been suggested by Ozel (2006), although we cannot discard the canonical value of ~1.4 M_sun.
Utilizing an archived Suzaku data acquired on 2007 December 25 for 46 ks, X-ray spectroscopic properties of the dipping and eclipsing low-mass X-ray binary EXO 0748$-$676 were studied. At an assumed distance of 7.1 kpc, the data gave a persistent una bsorbed luminosity of $3.4times10^{36}$ erg cm$^{-2}$ s$^{-1}$ in 0.6 $-$ 55 keV. The source was in a relatively bright low/hard state, wherein the 0.6 $-$ 55 keV spectrum can be successfully explained by a double-seed Comptonization model, incorporating a common corona with an electron temperature of $sim13$ keV. The seed photons are thought to be supplied from both the neutron star surface, and a cooler truncated disk. Compared to a sample of non-dipping low-mass X-ray binaries in the low/hard state, the spectrum is subject to stronger Comptonization, with a relatively larger Comptonizing $y$-parameter of $sim1.4$ and a larger coronal optical depth of $sim5$. This result, when attributed to the high inclination of EXO 0748$-$676, suggests that the Comptonizing corona may elongate along the disk plane, and give a longer path for the seed photons when viewed from edge-on inclinations.
59 - L. Boirin 2007
[Abridged] Type-I X-ray bursts are thermonuclear flashes that take place on the surface of accreting neutron stars. The wait time between consecutive bursts is set by the time required to accumulate the fuel needed to trigger a new burst; this is at least one hour. Sometimes secondary bursts are observed, approximately 10 min after the main burst. These short wait-time bursts are not yet understood. We observed the low-mass X-ray binary and X-ray burster EXO 0748-676 with XMM-Newton for 158 h, during 7 uninterrupted observations lasting up to 30 h each. We detect 76 X-ray bursts. Most remarkably, 15 of these bursts occur in burst triplets, with wait times of 12 min between the three components of the triplet. We also detect 14 doublets with similar wait times between the two components of the doublet. The characteristics of the bursts indicate that possibly all bursts in this system are hydrogen-ignited, in contrast with most other frequent X-ray bursters in which bursts are helium-ignited, but consistent with the low mass accretion rate in EXO 0748-676. Possibly the hydrogen ignition is the determining factor for the occurrence of short wait-time bursts.
115 - Guobao Zhang 2010
Recently, the neutron star X-ray binary EXO 0748-676 underwent a transition to quiescence. We analyzed an XMM-Newton observation of this source in quiescence, where we fitted the spectrum with two different neutron-star atmosphere models. From the fi ts we constrained the allowed parameter space in the mass-radius diagram for this source for an assumed range of distances to the system. Comparing the results with different neutron-star equations of state, we constrained the distance to EXO 0748-676. We found that the EOS model SQM1 is rejected by the atmosphere model fits for the known distance, and the AP3 and MS1 is fully consistent with the known distance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا